These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


274 related items for PubMed ID: 19857158

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43. Evolution of thermal physiology in Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking.
    Labra A, Pienaar J, Hansen TF.
    Am Nat; 2009 Aug; 174(2):204-20. PubMed ID: 19538089
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change.
    Woods HA, Dillon ME, Pincebourde S.
    J Therm Biol; 2015 Dec; 54():86-97. PubMed ID: 26615730
    [Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48. Coadaptation: a unifying principle in evolutionary thermal biology.
    Angilletta MJ, Bennett AF, Guderley H, Navas CA, Seebacher F, Wilson RS.
    Physiol Biochem Zool; 2006 Dec; 79(2):282-94. PubMed ID: 16555188
    [Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50. EVOLUTION OF SPRINT SPEED IN LACERTID LIZARDS: MORPHOLOGICAL, PHYSIOLOGICAL, AND BEHAVIORAL COVARIATION.
    Bauwens D, Garland T, Castilla AM, Van Damme R.
    Evolution; 1995 Oct; 49(5):848-863. PubMed ID: 28564867
    [Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52. Plastic rates of development and the effect of thermal extremes on offspring fitness in a cold-climate viviparous lizard.
    Cunningham GD, Fitzpatrick LJ, While GM, Wapstra E.
    J Exp Zool A Ecol Integr Physiol; 2018 Apr; 329(4-5):262-270. PubMed ID: 29791071
    [Abstract] [Full Text] [Related]

  • 53. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming.
    Gunderson AR, Stillman JH.
    Proc Biol Sci; 2015 Jun 07; 282(1808):20150401. PubMed ID: 25994676
    [Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55. Ecotypic variation in the context of global climate change: revisiting the rules.
    Millien V, Kathleen Lyons S, Olson L, Smith FA, Wilson AB, Yom-Tov Y.
    Ecol Lett; 2006 Jul 07; 9(7):853-69. PubMed ID: 16796576
    [Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57. Size-fecundity relationships, growth trajectories, and the temperature-size rule for ectotherms.
    Arendt JD.
    Evolution; 2011 Jan 07; 65(1):43-51. PubMed ID: 20812979
    [Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59. Covariation of larval gene expression and adult body size in natural populations of Drosophila melanogaster.
    Bochdanovits Z, van der Klis H, de Jong G.
    Mol Biol Evol; 2003 Nov 07; 20(11):1760-6. PubMed ID: 12832628
    [Abstract] [Full Text] [Related]

  • 60. Evolution in a constant environment: thermal fluctuations and thermal sensitivity of laboratory and field populations of Manduca sexta.
    Kingsolver JG, Ragland GJ, Diamond SE.
    Evolution; 2009 Feb 07; 63(2):537-41. PubMed ID: 19154355
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.