These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


369 related items for PubMed ID: 1986242

  • 1. Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control.
    Abastado JP, Miller PF, Jackson BM, Hinnebusch AG.
    Mol Cell Biol; 1991 Jan; 11(1):486-96. PubMed ID: 1986242
    [Abstract] [Full Text] [Related]

  • 2. A quantitative model for translational control of the GCN4 gene of Saccharomyces cerevisiae.
    Abastado JP, Miller PF, Hinnebusch AG.
    New Biol; 1991 May; 3(5):511-24. PubMed ID: 1883814
    [Abstract] [Full Text] [Related]

  • 3. Requirements for intercistronic distance and level of eukaryotic initiation factor 2 activity in reinitiation on GCN4 mRNA vary with the downstream cistron.
    Grant CM, Miller PF, Hinnebusch AG.
    Mol Cell Biol; 1994 Apr; 14(4):2616-28. PubMed ID: 8139562
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2.
    Hinnebusch AG.
    Mol Microbiol; 1993 Oct; 10(2):215-23. PubMed ID: 7934812
    [Abstract] [Full Text] [Related]

  • 7. Effect of sequence context at stop codons on efficiency of reinitiation in GCN4 translational control.
    Grant CM, Hinnebusch AG.
    Mol Cell Biol; 1994 Jan; 14(1):606-18. PubMed ID: 8264629
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Physical evidence for distinct mechanisms of translational control by upstream open reading frames.
    Gaba A, Wang Z, Krishnamoorthy T, Hinnebusch AG, Sachs MS.
    EMBO J; 2001 Nov 15; 20(22):6453-63. PubMed ID: 11707416
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Translation Initiation from Conserved Non-AUG Codons Provides Additional Layers of Regulation and Coding Capacity.
    Ivanov IP, Wei J, Caster SZ, Smith KM, Michel AM, Zhang Y, Firth AE, Freitag M, Dunlap JC, Bell-Pedersen D, Atkins JF, Sachs MS.
    mBio; 2017 Jun 27; 8(3):. PubMed ID: 28655822
    [Abstract] [Full Text] [Related]

  • 12. Multiple upstream AUG codons mediate translational control of GCN4.
    Mueller PP, Hinnebusch AG.
    Cell; 1986 Apr 25; 45(2):201-7. PubMed ID: 3516411
    [Abstract] [Full Text] [Related]

  • 13. Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae.
    Ramirez M, Wek RC, Hinnebusch AG.
    Mol Cell Biol; 1991 Jun 25; 11(6):3027-36. PubMed ID: 2038314
    [Abstract] [Full Text] [Related]

  • 14. Ribosomal protein L33 is required for ribosome biogenesis, subunit joining, and repression of GCN4 translation.
    Martín-Marcos P, Hinnebusch AG, Tamame M.
    Mol Cell Biol; 2007 Sep 25; 27(17):5968-85. PubMed ID: 17548477
    [Abstract] [Full Text] [Related]

  • 15. GCD2, a translational repressor of the GCN4 gene, has a general function in the initiation of protein synthesis in Saccharomyces cerevisiae.
    Foiani M, Cigan AM, Paddon CJ, Harashima S, Hinnebusch AG.
    Mol Cell Biol; 1991 Jun 25; 11(6):3203-16. PubMed ID: 2038326
    [Abstract] [Full Text] [Related]

  • 16. cis-acting sequences involved in the translational control of GCN4 expression.
    Miller PF, Hinnebusch AG.
    Biochim Biophys Acta; 1990 Aug 27; 1050(1-3):151-4. PubMed ID: 2207139
    [Abstract] [Full Text] [Related]

  • 17. Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2.
    Rolfes RJ, Hinnebusch AG.
    Mol Cell Biol; 1993 Aug 27; 13(8):5099-111. PubMed ID: 8336737
    [Abstract] [Full Text] [Related]

  • 18. Identification of GCD14 and GCD15, novel genes required for translational repression of GCN4 mRNA in Saccharomyces cerevisiae.
    Cuesta R, Hinnebusch AG, Tamame M.
    Genetics; 1998 Mar 27; 148(3):1007-20. PubMed ID: 9539420
    [Abstract] [Full Text] [Related]

  • 19. Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression.
    Wek RC, Ramirez M, Jackson BM, Hinnebusch AG.
    Mol Cell Biol; 1990 Jun 27; 10(6):2820-31. PubMed ID: 2188100
    [Abstract] [Full Text] [Related]

  • 20. Transcriptional-translational regulatory circuit in Saccharomyces cerevisiae which involves the GCN4 transcriptional activator and the GCN2 protein kinase.
    Roussou I, Thireos G, Hauge BM.
    Mol Cell Biol; 1988 May 27; 8(5):2132-9. PubMed ID: 3290651
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.