These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
132 related items for PubMed ID: 1987244
1. Coronary arterial remodeling studied by high-frequency epicardial echocardiography: an early compensatory mechanism in patients with obstructive coronary atherosclerosis. McPherson DD, Sirna SJ, Hiratzka LF, Thorpe L, Armstrong ML, Marcus ML, Kerber RE. J Am Coll Cardiol; 1991 Jan; 17(1):79-86. PubMed ID: 1987244 [Abstract] [Full Text] [Related]
2. Can atherosclerotic coronary arteries vasodilate? An intraoperative high-frequency epicardial echocardiographic study. McPherson DD, Sirna S, Collins SM, Ross AF, Moyers JR, Kane BJ, Hiratzka LF, Marcus ML, Kerber RE. Am J Cardiol; 1995 Jul 01; 76(1):21-5. PubMed ID: 7793397 [Abstract] [Full Text] [Related]
3. Validation by high-frequency epicardial echocardiography of a new method of analyzing coronary angiography quantitatively in coronary artery disease. McPherson DD, Johnson MR, Collins SM, Kieso RA, Marcus ML, Kerber RE. Am J Cardiol; 1993 Jan 01; 71(1):28-32. PubMed ID: 8420232 [Abstract] [Full Text] [Related]
4. New insights into the pathophysiology of coronary arteries by epicardial high frequency echocardiography. McPherson DD, Kerber RE. J Am Soc Echocardiogr; 1989 Jan 01; 2(4):284-95. PubMed ID: 2697307 [Abstract] [Full Text] [Related]
5. What have we learned about coronary artery disease from high-frequency epicardial echocardiography? Kerber RE, McPherson DD, Sirna SJ, Ross A, Marcus ML. Int J Card Imaging; 1989 Jan 01; 4(2-4):169-76. PubMed ID: 2671168 [Abstract] [Full Text] [Related]
6. Left anterior descending coronary artery wall thickness measured by high-frequency transthoracic and epicardial echocardiography includes adventitia. Gradus-Pizlo I, Bigelow B, Mahomed Y, Sawada SG, Rieger K, Feigenbaum H. Am J Cardiol; 2003 Jan 01; 91(1):27-32. PubMed ID: 12505567 [Abstract] [Full Text] [Related]
9. In vivo validation of compensatory enlargement of atherosclerotic coronary arteries. Hermiller JB, Tenaglia AN, Kisslo KB, Phillips HR, Bashore TM, Stack RS, Davidson CJ. Am J Cardiol; 1993 Mar 15; 71(8):665-8. PubMed ID: 8447262 [Abstract] [Full Text] [Related]
10. Impact of compensatory enlargement of atherosclerotic coronary arteries on angiographic assessment of coronary artery disease. Stiel GM, Stiel LS, Schofer J, Donath K, Mathey DG. Circulation; 1989 Dec 15; 80(6):1603-9. PubMed ID: 2598424 [Abstract] [Full Text] [Related]
11. Contribution of inadequate compensatory enlargement to development of human coronary artery stenosis: an in vivo intravascular ultrasound study. Nishioka T, Luo H, Eigler NL, Berglund H, Kim CJ, Siegel RJ. J Am Coll Cardiol; 1996 Jun 15; 27(7):1571-6. PubMed ID: 8636538 [Abstract] [Full Text] [Related]
13. Remodeling after directional coronary atherectomy (with and without adjunct percutaneous transluminal coronary angioplasty): a serial angiographic and intravascular ultrasound analysis from the Optimal Atherectomy Restenosis Study. Lansky AJ, Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Baim DS, Kuntz RE, Simonton C, Bersin RM, Hinohara T, Fitzgerald PJ, Leon MB. J Am Coll Cardiol; 1998 Aug 15; 32(2):329-37. PubMed ID: 9708457 [Abstract] [Full Text] [Related]
19. Shrinkage of human coronary arteries is an important determinant of de novo atherosclerotic luminal stenosis: an in vivo intravascular ultrasound study. Smits PC, Bos L, Quarles van Ufford MA, Eefting FD, Pasterkamp G, Borst C. Heart; 1998 Feb 15; 79(2):143-7. PubMed ID: 9538306 [Abstract] [Full Text] [Related]