These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


173 related items for PubMed ID: 19874856

  • 1. Crystal structure of the aspartyl-tRNA synthetase from Entamoeba histolytica.
    Merritt EA, Arakaki TL, Larson ET, Kelley A, Mueller N, Napuli AJ, Zhang L, Deditta G, Luft J, Verlinde CL, Fan E, Zucker F, Buckner FS, Van Voorhis WC, Hol WG.
    Mol Biochem Parasitol; 2010 Feb; 169(2):95-100. PubMed ID: 19874856
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase.
    Merritt EA, Arakaki TL, Gillespie R, Napuli AJ, Kim JE, Buckner FS, Van Voorhis WC, Verlinde CL, Fan E, Zucker F, Hol WG.
    Mol Biochem Parasitol; 2011 May; 177(1):20-8. PubMed ID: 21255615
    [Abstract] [Full Text] [Related]

  • 4. Anticodon-binding domain swapping in a nondiscriminating aspartyl-tRNA synthetase reveals contributions to tRNA specificity and catalytic activity.
    Chuawong P, Likittrakulwong W, Suebka S, Wiriyatanakorn N, Saparpakorn P, Taweesablamlert A, Sudprasert W, Hendrickson T, Svasti J.
    Proteins; 2020 Sep; 88(9):1133-1142. PubMed ID: 32067260
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity.
    Chuawong P, Hendrickson TL.
    Biochemistry; 2006 Jul 04; 45(26):8079-87. PubMed ID: 16800632
    [Abstract] [Full Text] [Related]

  • 7. Crystal structures of Entamoeba histolytica lysyl-tRNA synthetase reveal conformational changes upon lysine binding and a specific helix bundle domain.
    Bonnefond L, Castro de Moura M, Ribas de Pouplana L, Nureki O.
    FEBS Lett; 2014 Nov 28; 588(23):4478-86. PubMed ID: 25448989
    [Abstract] [Full Text] [Related]

  • 8. Molecular dynamics simulations of cognate and non-cognate AspRS-tRNAAsp complexes.
    Ramakrishnan C, Nagarajan R, Sekijima M, Michael Gromiha M.
    J Biomol Struct Dyn; 2021 Feb 28; 39(2):493-501. PubMed ID: 31900102
    [Abstract] [Full Text] [Related]

  • 9. Single amino acid changes in AspRS reveal alternative routes for expanding its tRNA repertoire in vivo.
    Martin F, Barends S, Eriani G.
    Nucleic Acids Res; 2004 Feb 28; 32(13):4081-9. PubMed ID: 15289581
    [Abstract] [Full Text] [Related]

  • 10. Spectroscopic Studies of Asparaginyl-tRNA Synthetase from Entamoeba histolytica.
    Biswas P, Sahu DK, Sahu K, Banerjee R.
    Protein Pept Lett; 2019 Jul 04; 26(6):435-448. PubMed ID: 30919766
    [Abstract] [Full Text] [Related]

  • 11. An intricate RNA structure with two tRNA-derived motifs directs complex formation between yeast aspartyl-tRNA synthetase and its mRNA.
    Ryckelynck M, Masquida B, Giegé R, Frugier M.
    J Mol Biol; 2005 Dec 02; 354(3):614-29. PubMed ID: 16257416
    [Abstract] [Full Text] [Related]

  • 12. Structure of the nondiscriminating aspartyl-tRNA synthetase from the crenarchaeon Sulfolobus tokodaii strain 7 reveals the recognition mechanism for two different tRNA anticodons.
    Sato Y, Maeda Y, Shimizu S, Hossain MT, Ubukata S, Suzuki K, Sekiguchi T, Takénaka A.
    Acta Crystallogr D Biol Crystallogr; 2007 Oct 02; 63(Pt 10):1042-7. PubMed ID: 17881821
    [Abstract] [Full Text] [Related]

  • 13. An intermediate step in the recognition of tRNA(Asp) by aspartyl-tRNA synthetase.
    Briand C, Poterszman A, Eiler S, Webster G, Thierry J, Moras D.
    J Mol Biol; 2000 Jun 16; 299(4):1051-60. PubMed ID: 10843857
    [Abstract] [Full Text] [Related]

  • 14. Expanding tRNA recognition of a tRNA synthetase by a single amino acid change.
    Feng L, Tumbula-Hansen D, Toogood H, Soll D.
    Proc Natl Acad Sci U S A; 2003 May 13; 100(10):5676-81. PubMed ID: 12730374
    [Abstract] [Full Text] [Related]

  • 15. Two residues in the anticodon recognition domain of the aspartyl-tRNA synthetase from Pseudomonas aeruginosa are individually implicated in the recognition of tRNAAsn.
    Bernard D, Akochy PM, Beaulieu D, Lapointe J, Roy PH.
    J Bacteriol; 2006 Jan 13; 188(1):269-74. PubMed ID: 16352843
    [Abstract] [Full Text] [Related]

  • 16. Crystal structure of human cytosolic aspartyl-tRNA synthetase, a component of multi-tRNA synthetase complex.
    Kim KR, Park SH, Kim HS, Rhee KH, Kim BG, Kim DG, Park MS, Kim HJ, Kim S, Han BW.
    Proteins; 2013 Oct 13; 81(10):1840-6. PubMed ID: 23609930
    [Abstract] [Full Text] [Related]

  • 17. Yeast aspartyl-tRNA synthetase residues interacting with tRNA(Asp) identity bases connectively contribute to tRNA(Asp) binding in the ground and transition-state complex and discriminate against non-cognate tRNAs.
    Eriani G, Gangloff J.
    J Mol Biol; 1999 Aug 27; 291(4):761-73. PubMed ID: 10452887
    [Abstract] [Full Text] [Related]

  • 18. Structure of the Pseudomonas aeruginosa transamidosome reveals unique aspects of bacterial tRNA-dependent asparagine biosynthesis.
    Suzuki T, Nakamura A, Kato K, Söll D, Tanaka I, Sheppard K, Yao M.
    Proc Natl Acad Sci U S A; 2015 Jan 13; 112(2):382-7. PubMed ID: 25548166
    [Abstract] [Full Text] [Related]

  • 19. Non-discriminating and discriminating aspartyl-tRNA synthetases differ in the anticodon-binding domain.
    Charron C, Roy H, Blaise M, Giegé R, Kern D.
    EMBO J; 2003 Apr 01; 22(7):1632-43. PubMed ID: 12660169
    [Abstract] [Full Text] [Related]

  • 20. Sequence, overproduction and crystallization of aspartyl-tRNA synthetase from Thermus thermophilus. Implications for the structure of prokaryotic aspartyl-tRNA synthetases.
    Poterszman A, Plateau P, Moras D, Blanquet S, Mazauric MH, Kreutzer R, Kern D.
    FEBS Lett; 1993 Jul 05; 325(3):183-6. PubMed ID: 8319804
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.