These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 19875779

  • 1. Evaluation of two in vitro protocols for determination of mercury bioaccessibility: influence of mercury fractionation and soil properties.
    Welfringer B, Zagury GJ.
    J Environ Qual; 2009; 38(6):2237-44. PubMed ID: 19875779
    [Abstract] [Full Text] [Related]

  • 2. Influence of mercury speciation and fractionation on bioaccessibility in soils.
    Zagury GJ, Bedeaux C, Welfringer B.
    Arch Environ Contam Toxicol; 2009 Apr; 56(3):371-9. PubMed ID: 18704252
    [Abstract] [Full Text] [Related]

  • 3. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E, Zagury GJ.
    Sci Total Environ; 2009 Apr 01; 407(8):2576-85. PubMed ID: 19211134
    [Abstract] [Full Text] [Related]

  • 4. Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites.
    Sarkar D, Makris KC, Parra-Noonan MT, Datta R.
    Environ Int; 2007 Feb 01; 33(2):164-9. PubMed ID: 17034861
    [Abstract] [Full Text] [Related]

  • 5. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils.
    Juhasz AL, Smith E, Weber J, Rees M, Rofe A, Kuchel T, Sansom L, Naidu R.
    Chemosphere; 2007 Oct 01; 69(6):961-6. PubMed ID: 17585998
    [Abstract] [Full Text] [Related]

  • 6. Bioaccessibility of mercury from traditional northern country foods measured using an in vitro gastrointestinal model is independent of mercury concentration.
    Laird BD, Shade C, Gantner N, Chan HM, Siciliano SD.
    Sci Total Environ; 2009 Nov 15; 407(23):6003-8. PubMed ID: 19740524
    [Abstract] [Full Text] [Related]

  • 7. Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions.
    Neculita CM, Zagury GJ, Deschênes L.
    J Environ Qual; 2005 Nov 15; 34(1):255-62. PubMed ID: 15647556
    [Abstract] [Full Text] [Related]

  • 8. Characterization of mercury species in soils by HPLC-ICP-MS and measurement of fraction removed by diffusive gradient in thin films.
    Cattani I, Spalla S, Beone GM, Del Re AA, Boccelli R, Trevisan M.
    Talanta; 2008 Feb 15; 74(5):1520-6. PubMed ID: 18371812
    [Abstract] [Full Text] [Related]

  • 9. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils.
    Juhasz AL, Weber J, Smith E, Naidu R, Rees M, Rofe A, Kuchel T, Sansom L.
    Environ Sci Technol; 2009 Dec 15; 43(24):9487-94. PubMed ID: 20000545
    [Abstract] [Full Text] [Related]

  • 10. The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China.
    Tang XY, Zhu YG, Cui YS, Duan J, Tang L.
    Environ Int; 2006 Jul 15; 32(5):682-9. PubMed ID: 16616372
    [Abstract] [Full Text] [Related]

  • 11. Mercury fractionation in contaminated soils from the Idrija mercury mine region.
    Kocman D, Horvat M, Kotnik J.
    J Environ Monit; 2004 Aug 15; 6(8):696-703. PubMed ID: 15292953
    [Abstract] [Full Text] [Related]

  • 12. Arsenic fractionation and bioaccessibility in two alkaline Texas soils incubated with sodium arsenate.
    Datta R, Makris KC, Sarkar D.
    Arch Environ Contam Toxicol; 2007 May 15; 52(4):475-82. PubMed ID: 17387422
    [Abstract] [Full Text] [Related]

  • 13. Availability and bioaccessibility of metals in fine particles of some urban soils.
    Madrid F, Biasioli M, Ajmone-Marsan F.
    Arch Environ Contam Toxicol; 2008 Jul 15; 55(1):21-32. PubMed ID: 18058158
    [Abstract] [Full Text] [Related]

  • 14. Comparison of bioaccessibility methods in spiked and field Hg-contaminated soils.
    Vasques ICF, Lima FRD, Oliveira JR, de Morais EG, Pereira P, Guilherme LRG, Marques JJ.
    Chemosphere; 2020 Sep 15; 254():126904. PubMed ID: 32957297
    [Abstract] [Full Text] [Related]

  • 15. Contaminated soils (II): in vitro dermal absorption of nickel (Ni-63) and mercury (Hg-203) in human skin.
    Moody RP, Joncas J, Richardson M, Petrovic S, Chu I.
    J Toxicol Environ Health A; 2009 Sep 15; 72(8):551-9. PubMed ID: 19267315
    [Abstract] [Full Text] [Related]

  • 16. Environmental assessment of mercury contamination from the Rwamagasa artisanal gold mining centre, Geita District, Tanzania.
    Taylor H, Appleton JD, Lister R, Smith B, Chitamweba D, Mkumbo O, Machiwa JF, Tesha AL, Beinhoff C.
    Sci Total Environ; 2005 May 01; 343(1-3):111-33. PubMed ID: 15862840
    [Abstract] [Full Text] [Related]

  • 17. Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method.
    Liu G, Cabrera J, Allen M, Cai Y.
    Sci Total Environ; 2006 Oct 01; 369(1-3):384-92. PubMed ID: 16904164
    [Abstract] [Full Text] [Related]

  • 18. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils.
    Smith E, Naidu R, Weber J, Juhasz AL.
    Chemosphere; 2008 Mar 01; 71(4):773-80. PubMed ID: 18023842
    [Abstract] [Full Text] [Related]

  • 19. Sample drying effects on lead bioaccessibility in reduced soil.
    Furman O, Strawn DG, McGeehan S.
    J Environ Qual; 2007 Mar 01; 36(3):899-903. PubMed ID: 17485722
    [Abstract] [Full Text] [Related]

  • 20. Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia).
    Gosar M, Sajn R, Biester H.
    Sci Total Environ; 2006 Oct 01; 369(1-3):150-62. PubMed ID: 16764912
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.