These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
128 related items for PubMed ID: 19879852
1. Knock-down of REL2, but not defensin A, augments Aedes aegypti susceptibility to Bacillus subtilis and Escherichia coli. Magalhaes T, Leandro DC, Ayres CF. Acta Trop; 2010 Feb; 113(2):167-73. PubMed ID: 19879852 [Abstract] [Full Text] [Related]
2. Reassessing the role of defensin in the innate immune response of the mosquito, Aedes aegypti. Bartholomay LC, Fuchs JF, Cheng LL, Beck ET, Vizioli J, Lowenberger C, Christensen BM. Insect Mol Biol; 2004 Apr; 13(2):125-32. PubMed ID: 15056359 [Abstract] [Full Text] [Related]
3. The role of NF-kappaB factor REL2 in the Aedes aegypti immune response. Antonova Y, Alvarez KS, Kim YJ, Kokoza V, Raikhel AS. Insect Biochem Mol Biol; 2009 Apr; 39(4):303-14. PubMed ID: 19552893 [Abstract] [Full Text] [Related]
4. Aedes FADD: a novel death domain-containing protein required for antibacterial immunity in the yellow fever mosquito, Aedes aegypti. Cooper DM, Chamberlain CM, Lowenberger C. Insect Biochem Mol Biol; 2009 Jan; 39(1):47-54. PubMed ID: 18977438 [Abstract] [Full Text] [Related]
12. Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: roles of immune-related proteins shown by RNA interference. Eleftherianos I, Marokhazi J, Millichap PJ, Hodgkinson AJ, Sriboonlert A, ffrench-Constant RH, Reynolds SE. Insect Biochem Mol Biol; 2006 Jun; 36(6):517-25. PubMed ID: 16731347 [Abstract] [Full Text] [Related]
13. Functional implications of the peptidoglycan recognition proteins in the immunity of the yellow fever mosquito, Aedes aegypti. Wang S, Beerntsen BT. Insect Mol Biol; 2015 Jun; 24(3):293-310. PubMed ID: 25588548 [Abstract] [Full Text] [Related]
14. The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response. Ramirez JL, Muturi EJ, Barletta ABF, Rooney AP. Dev Comp Immunol; 2019 Jun; 95():1-9. PubMed ID: 30582948 [Abstract] [Full Text] [Related]
15. Identification and characterization of antimicrobial peptide, defensin, in the taiga tick, Ixodes persulcatus. Saito Y, Konnai S, Yamada S, Imamura S, Nishikado H, Ito T, Onuma M, Ohashi K. Insect Mol Biol; 2009 Aug; 18(4):531-9. PubMed ID: 19604312 [Abstract] [Full Text] [Related]
18. Identification of immune-responsive genes in the mosquito Culex quinquefasciatus infected with the filarial parasite Wuchereria bancrofti. Kumar BA, Paily KP. Med Vet Entomol; 2008 Dec; 22(4):394-8. PubMed ID: 19120967 [Abstract] [Full Text] [Related]
19. Effect of temperature stress on immature stages and susceptibility of Aedes aegypti mosquitoes to chikungunya virus. Mourya DT, Yadav P, Mishra AC. Am J Trop Med Hyg; 2004 Apr; 70(4):346-50. PubMed ID: 15100445 [Abstract] [Full Text] [Related]