These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
156 related items for PubMed ID: 19880641
21. Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant. Zhou Z, Wang C, Xu H, Chen Z, Cai H. J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1073-82. PubMed ID: 25952119 [Abstract] [Full Text] [Related]
22. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. Mustafi N, Grünberger A, Mahr R, Helfrich S, Nöh K, Blombach B, Kohlheyer D, Frunzke J. PLoS One; 2014 Jul; 9(1):e85731. PubMed ID: 24465669 [Abstract] [Full Text] [Related]
23. Substrate-dependent cluster density dynamics of Corynebacterium glutamicum phosphotransferase system permeases. Martins GB, Giacomelli G, Goldbeck O, Seibold GM, Bramkamp M. Mol Microbiol; 2019 May; 111(5):1335-1354. PubMed ID: 30748039 [Abstract] [Full Text] [Related]
24. Comparative 13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, L-valine-producing Corynebacterium glutamicum. Bartek T, Blombach B, Lang S, Eikmanns BJ, Wiechert W, Oldiges M, Nöh K, Noack S. Appl Environ Microbiol; 2011 Sep; 77(18):6644-52. PubMed ID: 21784914 [Abstract] [Full Text] [Related]
25. Identification and application of a growth-regulated promoter for improving L-valine production in Corynebacterium glutamicum. Ma Y, Cui Y, Du L, Liu X, Xie X, Chen N. Microb Cell Fact; 2018 Nov 24; 17(1):185. PubMed ID: 30474553 [Abstract] [Full Text] [Related]
26. The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. Engels V, Wendisch VF. J Bacteriol; 2007 Apr 24; 189(8):2955-66. PubMed ID: 17293426 [Abstract] [Full Text] [Related]
27. Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum. Seibold GM, Wurst M, Eikmanns BJ. Microbiology (Reading); 2009 Feb 24; 155(Pt 2):347-358. PubMed ID: 19202084 [Abstract] [Full Text] [Related]
28. Metabolic Engineering of Corynebacterium glutamicum for the High-Level Production of l-Valine under Aerobic Conditions. Wang F, Cai N, Leng Y, Wu C, Wang Y, Tian S, Zhang C, Xu Q, Peng H, Chen N, Li Y. ACS Synth Biol; 2024 Sep 20; 13(9):2861-2872. PubMed ID: 38946081 [Abstract] [Full Text] [Related]
29. Metabolic engineering to guide evolution - Creating a novel mode for L-valine production with Corynebacterium glutamicum. Schwentner A, Feith A, Münch E, Busche T, Rückert C, Kalinowski J, Takors R, Blombach B. Metab Eng; 2018 May 20; 47():31-41. PubMed ID: 29522826 [Abstract] [Full Text] [Related]
30. Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases. Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF. Appl Environ Microbiol; 2011 Jun 20; 77(11):3571-81. PubMed ID: 21478323 [Abstract] [Full Text] [Related]
31. Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK. FEMS Microbiol Lett; 2005 Mar 15; 244(2):259-66. PubMed ID: 15766777 [Abstract] [Full Text] [Related]
32. Engineering Corynebacterium glutamicum for the production of pyruvate. Wieschalka S, Blombach B, Eikmanns BJ. Appl Microbiol Biotechnol; 2012 Apr 15; 94(2):449-59. PubMed ID: 22228312 [Abstract] [Full Text] [Related]
33. Deletion of cg1360 Affects ATP Synthase Function and Enhances Production of L-Valine in Corynebacterium glutamicum. Wang X, Yang H, Zhou W, Liu J, Xu N. J Microbiol Biotechnol; 2019 Aug 28; 29(8):1288-1298. PubMed ID: 31370116 [Abstract] [Full Text] [Related]
34. The glucose uptake systems in Corynebacterium glutamicum: a review. Ruan H, Yu H, Xu J. World J Microbiol Biotechnol; 2020 Jul 26; 36(9):126. PubMed ID: 32712859 [Abstract] [Full Text] [Related]
35. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose. Kawaguchi H, Yoshihara K, Hara KY, Hasunuma T, Ogino C, Kondo A. Microb Cell Fact; 2018 May 17; 17(1):76. PubMed ID: 29773073 [Abstract] [Full Text] [Related]
36. A third glucose uptake bypass in Corynebacterium glutamicum ATCC 31833. Ikeda M, Noguchi N, Ohshita M, Senoo A, Mitsuhashi S, Takeno S. Appl Microbiol Biotechnol; 2015 Mar 17; 99(6):2741-50. PubMed ID: 25549619 [Abstract] [Full Text] [Related]
37. Elucidation of the regulation of ethanol catabolic genes and ptsG using a glxR and adenylate cyclase gene (cyaB) deletion mutants of Corynebacterium glutamicum ATCC 13032. Subhadra B, Lee JK. J Microbiol Biotechnol; 2013 Dec 17; 23(12):1683-90. PubMed ID: 24150494 [Abstract] [Full Text] [Related]
38. Isobutanol production in Corynebacterium glutamicum: Suppressed succinate by-production by pckA inactivation and enhanced productivity via the Entner-Doudoroff pathway. Hasegawa S, Jojima T, Suda M, Inui M. Metab Eng; 2020 May 17; 59():24-35. PubMed ID: 31926306 [Abstract] [Full Text] [Related]
39. The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering. Eikmanns BJ, Blombach B. J Biotechnol; 2014 Dec 20; 192 Pt B():339-45. PubMed ID: 24486441 [Abstract] [Full Text] [Related]
40. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Mahr R, Gätgens C, Gätgens J, Polen T, Kalinowski J, Frunzke J. Metab Eng; 2015 Nov 20; 32():184-194. PubMed ID: 26453945 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]