These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


325 related items for PubMed ID: 19888455

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages.
    Liu S, Zenda T, Li J, Wang Y, Liu X, Duan H.
    PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352
    [Abstract] [Full Text] [Related]

  • 23. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance.
    Killi D, Bussotti F, Raschi A, Haworth M.
    Physiol Plant; 2017 Feb; 159(2):130-147. PubMed ID: 27535211
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Maize leaves drought-responsive genes revealed by comparative transcriptome of two cultivars during the filling stage.
    Jin H, Liu S, Zenda T, Wang X, Liu G, Duan H.
    PLoS One; 2019 Feb; 14(10):e0223786. PubMed ID: 31665169
    [Abstract] [Full Text] [Related]

  • 29. Drought-tolerant and drought-sensitive genotypes of maize (Zea mays L.) differ in contents of endogenous brassinosteroids and their drought-induced changes.
    Tůmová L, Tarkowská D, Řehořová K, Marková H, Kočová M, Rothová O, Čečetka P, Holá D.
    PLoS One; 2018 Feb; 13(5):e0197870. PubMed ID: 29795656
    [Abstract] [Full Text] [Related]

  • 30. Comparative physiological and transcriptomic analyses reveal genotype specific response to drought stress in Siberian wildrye (Elymus sibiricus).
    An Y, Wang Q, Cui Y, Liu X, Wang P, Zhou Y, Kang P, Chen Y, Wang Z, Zhou Q, Wang P.
    Sci Rep; 2024 Sep 10; 14(1):21060. PubMed ID: 39256456
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L.
    Liu S, Wang X, Wang H, Xin H, Yang X, Yan J, Li J, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K, Qin F.
    PLoS Genet; 2013 Sep 10; 9(9):e1003790. PubMed ID: 24086146
    [Abstract] [Full Text] [Related]

  • 35. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis.
    Zhang P, Fan Y, Sun X, Chen L, Terzaghi W, Bucher E, Li L, Dai M.
    Plant J; 2019 May 10; 98(4):697-713. PubMed ID: 30715761
    [Abstract] [Full Text] [Related]

  • 36. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration?
    Benešová M, Holá D, Fischer L, Jedelský PL, Hnilička F, Wilhelmová N, Rothová O, Kočová M, Procházková D, Honnerová J, Fridrichová L, Hniličková H.
    PLoS One; 2012 May 10; 7(6):e38017. PubMed ID: 22719860
    [Abstract] [Full Text] [Related]

  • 37. Transcriptional analysis of drought-induced genes in the roots of a tolerant genotype of the common bean (Phaseolus vulgaris L.).
    Recchia GH, Caldas DG, Beraldo AL, da Silva MJ, Tsai SM.
    Int J Mol Sci; 2013 Mar 28; 14(4):7155-79. PubMed ID: 23538843
    [Abstract] [Full Text] [Related]

  • 38. Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress.
    Deokar AA, Kondawar V, Jain PK, Karuppayil SM, Raju NL, Vadez V, Varshney RK, Srinivasan R.
    BMC Plant Biol; 2011 Apr 22; 11():70. PubMed ID: 21513527
    [Abstract] [Full Text] [Related]

  • 39. Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.).
    Yıldırım K, Kaya Z.
    Plant Physiol Biochem; 2017 Jun 22; 115():183-199. PubMed ID: 28376411
    [Abstract] [Full Text] [Related]

  • 40. Quantitative proteomic analysis of two different rice varieties reveals that drought tolerance is correlated with reduced abundance of photosynthetic machinery and increased abundance of ClpD1 protease.
    Wu Y, Mirzaei M, Pascovici D, Chick JM, Atwell BJ, Haynes PA.
    J Proteomics; 2016 Jun 30; 143():73-82. PubMed ID: 27195813
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.