These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


312 related items for PubMed ID: 19891443

  • 1. Disulfides as cyanide antidotes: evidence for a new in vivo oxidative pathway for cyanide detoxification.
    Zottola MA, Beigel K, Soni SD, Lawrence R.
    Chem Res Toxicol; 2009 Dec; 22(12):1948-53. PubMed ID: 19891443
    [Abstract] [Full Text] [Related]

  • 2. In vitro and in vivo comparison of sulfur donors as antidotes to acute cyanide intoxication.
    Baskin SI, Porter DW, Rockwood GA, Romano JA, Patel HC, Kiser RC, Cook CM, Ternay AL.
    J Appl Toxicol; 1999 Dec; 19(3):173-83. PubMed ID: 10362268
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Characterization of a new periplasmic single-domain rhodanese encoded by a sulfur-regulated gene in a hyperthermophilic bacterium Aquifex aeolicus.
    Giuliani MC, Jourlin-Castelli C, Leroy G, Hachani A, Giudici-Orticoni MT.
    Biochimie; 2010 Apr; 92(4):388-97. PubMed ID: 20060433
    [Abstract] [Full Text] [Related]

  • 9. A partial exploration of the potential energy surfaces of SCN and HSCN: implications for the enzyme-mediated detoxification of cyanide.
    Zottola MA.
    J Mol Graph Model; 2009 Sep; 28(2):183-6. PubMed ID: 19625201
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Formation of a sandwich-structure assisted, relatively long-lived sulfur-centered three-electron bonded radical anion in the reduction of a bis(1-substituted-uracilyl) disulfide in aqueous solution.
    Wenska G, Filipiak P, Asmus KD, Bobrowski K, Koput J, Marciniak B.
    J Phys Chem B; 2008 Aug 14; 112(32):10045-53. PubMed ID: 18646807
    [Abstract] [Full Text] [Related]

  • 12. Characterization of liposomal vesicles encapsulating rhodanese for cyanide antagonism.
    Petrikovics I, Budai M, Baskin SI, Rockwood GA, Childress J, Budai L, Gróf P, Klebovich I, Szilasi M.
    Drug Deliv; 2009 Aug 14; 16(6):312-9. PubMed ID: 19606945
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Cyanide detoxification by recombinant bacterial rhodanese.
    Cipollone R, Ascenzi P, Frangipani E, Visca P.
    Chemosphere; 2006 May 14; 63(6):942-9. PubMed ID: 16307778
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Encapsulation of rhodanese and organic thiosulfonates by mouse erythrocytes.
    Petrikovics I, Pei L, McGuinn WD, Cannon EP, Way JL.
    Fundam Appl Toxicol; 1994 Jul 14; 23(1):70-5. PubMed ID: 7958565
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Solution structures and backbone dynamics of Escherichia coli rhodanese PspE in its sulfur-free and persulfide-intermediate forms: implications for the catalytic mechanism of rhodanese.
    Li H, Yang F, Kang X, Xia B, Jin C.
    Biochemistry; 2008 Apr 15; 47(15):4377-85. PubMed ID: 18355042
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.