These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Putative folding pathway of insulin-like growth factor-I. Rosenfeld RD, Miller JA, Narhi LO, Hawkins N, Katta V, Lauren S, Weiss MA, Arakawa T. Arch Biochem Biophys; 1997 Jun 15; 342(2):298-305. PubMed ID: 9186491 [Abstract] [Full Text] [Related]
25. Formation, preservation, and cleavage of the disulfide bond by vanadium. Wang D, Behrens A, Farahbakhsh M, Gätjens J, Rehder D. Chemistry; 2003 Apr 14; 9(8):1805-13. PubMed ID: 12698438 [Abstract] [Full Text] [Related]
26. Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge. Balan S, Choi JW, Godwin A, Teo I, Laborde CM, Heidelberger S, Zloh M, Shaunak S, Brocchini S. Bioconjug Chem; 2007 Apr 14; 18(1):61-76. PubMed ID: 17226958 [Abstract] [Full Text] [Related]
28. Mercaptopyruvate sulfurtransferase as a defense against cyanide toxication: molecular properties and mode of detoxification. Nagahara N, Ito T, Minami M. Histol Histopathol; 1999 Oct 14; 14(4):1277-86. PubMed ID: 10506943 [Abstract] [Full Text] [Related]
30. Inhibition of the catalytic activity of rhodanese by S-nitrosylation using nitric oxide donors. Kwiecień I, Sokołowska M, Luchter-Wasylewska E, Włodek L. Int J Biochem Cell Biol; 2003 Dec 14; 35(12):1645-57. PubMed ID: 12962704 [Abstract] [Full Text] [Related]
32. The cyanide-metabolizing enzyme rhodanese in different parts of the respiratory systems of sheep and dog. Aminlari M, Vaseghi T, Kargar MA. Toxicol Appl Pharmacol; 1994 Jan 14; 124(1):67-71. PubMed ID: 8291063 [Abstract] [Full Text] [Related]
33. Collision-activated cleavage of a peptide/antibiotic disulfide linkage: possible evidence for intramolecular disulfide bond rearrangement upon collisional activation. Fagerquist CK. Rapid Commun Mass Spectrom; 2004 Jan 14; 18(6):685-700. PubMed ID: 15052580 [Abstract] [Full Text] [Related]
34. Comparison of brain mitochondrial cytochrome c oxidase activity with cyanide LD(50) yields insight into the efficacy of prophylactics. Marziaz ML, Frazier K, Guidry PB, Ruiz RA, Petrikovics I, Haines DC. J Appl Toxicol; 2013 Jan 14; 33(1):50-5. PubMed ID: 21751223 [Abstract] [Full Text] [Related]
35. Oxidation of biological thiols by highly reactive disulfide-S-oxides. Giles GI, Tasker KM, Jacob C. Gen Physiol Biophys; 2002 Mar 14; 21(1):65-72. PubMed ID: 12168727 [Abstract] [Full Text] [Related]
37. Roles of Sulfur Metabolism and Rhodanese in Detoxification and Anti-Oxidative Stress Functions in the Liver: Responses to Radiation Exposure. Nakajima T. Med Sci Monit; 2015 Jun 14; 21():1721-5. PubMed ID: 26071878 [Abstract] [Full Text] [Related]
38. Rhodanese conformational changes permit oxidation to give disulfides that form in a kinetically determined sequence. Horowitz PM, Hua S. Biochim Biophys Acta; 1995 Jun 12; 1249(2):161-7. PubMed ID: 7599169 [Abstract] [Full Text] [Related]
39. Sulfurtransferases and cyanide detoxification in mouse liver, kidney, and brain. Wróbel M, Jurkowska H, Sliwa L, Srebro Z. Toxicol Mech Methods; 2004 Jun 12; 14(6):331-7. PubMed ID: 20021099 [Abstract] [Full Text] [Related]
40. rdlA, a new gene encoding a rhodanese-like protein in Halanaerobium congolense and other thiosulfate-reducing anaerobes. Ravot G, Casalot L, Ollivier B, Loison G, Magot M. Res Microbiol; 2005 Dec 12; 156(10):1031-8. PubMed ID: 16085393 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]