These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


278 related items for PubMed ID: 19904345

  • 1. Electrochemistry at carbon nanotubes: perspective and issues.
    Dumitrescu I, Unwin PR, Macpherson JV.
    Chem Commun (Camb); 2009 Dec 07; (45):6886-901. PubMed ID: 19904345
    [Abstract] [Full Text] [Related]

  • 2. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study.
    Banks CE, Compton RG.
    Analyst; 2005 Sep 07; 130(9):1232-9. PubMed ID: 16096667
    [Abstract] [Full Text] [Related]

  • 3. The advantage of using carbon nanotubes compared with edge plane pyrolytic graphite as an electrode material for oxidase-based biosensors.
    Kurusu F, Tsunoda H, Saito A, Tomita A, Kadota A, Kayahara N, Karube I, Gotoh M.
    Analyst; 2006 Dec 07; 131(12):1292-8. PubMed ID: 17124536
    [Abstract] [Full Text] [Related]

  • 4. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites.
    Banks CE, Davies TJ, Wildgoose GG, Compton RG.
    Chem Commun (Camb); 2005 Feb 21; (7):829-41. PubMed ID: 15700054
    [Abstract] [Full Text] [Related]

  • 5. Electrochemical detection of amino acids at carbon nanotube and nickel-carbon nanotube modified electrodes.
    Deo RP, Lawrence NS, Wang J.
    Analyst; 2004 Nov 21; 129(11):1076-81. PubMed ID: 15508037
    [Abstract] [Full Text] [Related]

  • 6. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum.
    Fei S, Chen J, Yao S, Deng G, He D, Kuang Y.
    Anal Biochem; 2005 Apr 01; 339(1):29-35. PubMed ID: 15766706
    [Abstract] [Full Text] [Related]

  • 7. Apparent 'electrocatalytic' activity of multiwalled carbon nanotubes in the detection of the anaesthetic halothane: occluded copper nanoparticles.
    Dai X, Wildgoose GG, Compton RG.
    Analyst; 2006 Aug 01; 131(8):901-6. PubMed ID: 17028723
    [Abstract] [Full Text] [Related]

  • 8. Electrochemical oxidation of catecholamines and catechols at carbon nanotube electrodes.
    Maldonado S, Morin S, Stevenson KJ.
    Analyst; 2006 Feb 01; 131(2):262-7. PubMed ID: 16440092
    [Abstract] [Full Text] [Related]

  • 9. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications.
    Vashist SK, Zheng D, Al-Rubeaan K, Luong JH, Sheu FS.
    Biotechnol Adv; 2011 Feb 01; 29(2):169-88. PubMed ID: 21034805
    [Abstract] [Full Text] [Related]

  • 10. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K.
    J Am Chem Soc; 2005 Mar 30; 127(12):4388-96. PubMed ID: 15783221
    [Abstract] [Full Text] [Related]

  • 11. Carbon nanotube/teflon composite electrochemical sensors and biosensors.
    Wang J, Musameh M.
    Anal Chem; 2003 May 01; 75(9):2075-9. PubMed ID: 12720343
    [Abstract] [Full Text] [Related]

  • 12. Carbon nanotube detectors for microchip CE: comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces.
    Pumera M, Merkoçi A, Alegret S.
    Electrophoresis; 2007 Apr 01; 28(8):1274-80. PubMed ID: 17366488
    [Abstract] [Full Text] [Related]

  • 13. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ, Krauss TD.
    Acc Chem Res; 2008 Feb 01; 41(2):235-43. PubMed ID: 18281946
    [Abstract] [Full Text] [Related]

  • 14. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes.
    Zhu L, Zhai J, Yang R, Tian C, Guo L.
    Biosens Bioelectron; 2007 May 15; 22(11):2768-73. PubMed ID: 17267199
    [Abstract] [Full Text] [Related]

  • 15. Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes.
    Esplandiu MJ, Pacios M, Cyganek L, Bartroli J, del Valle M.
    Nanotechnology; 2009 Sep 02; 20(35):355502. PubMed ID: 19671979
    [Abstract] [Full Text] [Related]

  • 16. Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes.
    Gong K, Dong Y, Xiong S, Chen Y, Mao L.
    Biosens Bioelectron; 2004 Sep 15; 20(2):253-9. PubMed ID: 15308229
    [Abstract] [Full Text] [Related]

  • 17. Electrochemical reduction of nitrobenzene at carbon nanotube electrode.
    Li YP, Cao HB, Liu CM, Zhang Y.
    J Hazard Mater; 2007 Sep 05; 148(1-2):158-63. PubMed ID: 17374445
    [Abstract] [Full Text] [Related]

  • 18. Bioelectrochemically functional nanohybrids through co-assembling of proteins and surfactants onto carbon nanotubes: facilitated electron transfer of assembled proteins with enhanced faradic response.
    Yan Y, Zheng W, Zhang M, Wang L, Su L, Mao L.
    Langmuir; 2005 Jul 05; 21(14):6560-6. PubMed ID: 15982067
    [Abstract] [Full Text] [Related]

  • 19. Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors.
    Yang M, Yang Y, Liu Y, Shen G, Yu R.
    Biosens Bioelectron; 2006 Jan 15; 21(7):1125-31. PubMed ID: 15885999
    [Abstract] [Full Text] [Related]

  • 20. EPR characterisation of platinum nanoparticle functionalised carbon nanotube hybrid materials.
    Dennany L, Sherrell P, Chen J, Innis PC, Wallace GG, Minett AI.
    Phys Chem Chem Phys; 2010 Apr 28; 12(16):4135-41. PubMed ID: 20379504
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.