These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


199 related items for PubMed ID: 19908123

  • 1. Prediction of mitochondrial proteins of malaria parasite using split amino acid composition and PSSM profile.
    Verma R, Varshney GC, Raghava GP.
    Amino Acids; 2010 Jun; 39(1):101-10. PubMed ID: 19908123
    [Abstract] [Full Text] [Related]

  • 2. Prediction of RNA binding sites in a protein using SVM and PSSM profile.
    Kumar M, Gromiha MM, Raghava GP.
    Proteins; 2008 Apr; 71(1):189-94. PubMed ID: 17932917
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Predicting sub-cellular localization of tRNA synthetases from their primary structures.
    Panwar B, Raghava GP.
    Amino Acids; 2012 May; 42(5):1703-13. PubMed ID: 21400228
    [Abstract] [Full Text] [Related]

  • 5. Using increment of diversity to predict mitochondrial proteins of malaria parasite: integrating pseudo-amino acid composition and structural alphabet.
    Chen YL, Li QZ, Zhang LQ.
    Amino Acids; 2012 Apr; 42(4):1309-16. PubMed ID: 21191803
    [Abstract] [Full Text] [Related]

  • 6. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M, Gromiha MM, Raghava GP.
    J Mol Recognit; 2011 Apr; 24(2):303-13. PubMed ID: 20677174
    [Abstract] [Full Text] [Related]

  • 7. Using K-minimum increment of diversity to predict secretory proteins of malaria parasite based on groupings of amino acids.
    Zuo YC, Li QZ.
    Amino Acids; 2010 Mar; 38(3):859-67. PubMed ID: 19387791
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Mito-GSAAC: mitochondria prediction using genetic ensemble classifier and split amino acid composition.
    Afridi TH, Khan A, Lee YS.
    Amino Acids; 2012 Apr; 42(4):1443-54. PubMed ID: 21445589
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. DPROT: prediction of disordered proteins using evolutionary information.
    Sethi D, Garg A, Raghava GP.
    Amino Acids; 2008 Oct; 35(3):599-605. PubMed ID: 18425404
    [Abstract] [Full Text] [Related]

  • 15. Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods.
    Natt NK, Kaur H, Raghava GP.
    Proteins; 2004 Jul 01; 56(1):11-8. PubMed ID: 15162482
    [Abstract] [Full Text] [Related]

  • 16. BTXpred: prediction of bacterial toxins.
    Saha S, Raghava GP.
    In Silico Biol; 2007 Jul 01; 7(4-5):405-12. PubMed ID: 18391233
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes.
    Saha S, Raghava GP.
    Nucleic Acids Res; 2006 Jul 01; 34(Web Server issue):W202-9. PubMed ID: 16844994
    [Abstract] [Full Text] [Related]

  • 20. Prediction of nuclear proteins using SVM and HMM models.
    Kumar M, Raghava GP.
    BMC Bioinformatics; 2009 Jan 19; 10():22. PubMed ID: 19152693
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.