These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Frequent Subgraph Mining of Functional Interaction Patterns Across Multiple Cancers. Durmaz A, Henderson TAD, Bebek G. Pac Symp Biocomput; 2021; 26():261-272. PubMed ID: 33691023 [Abstract] [Full Text] [Related]
24. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments. Zhang T, Guo J, Gu J, Wang Z, Wang G, Li H, Wang J. Oncol Rep; 2019 Jan; 41(1):279-291. PubMed ID: 30542696 [Abstract] [Full Text] [Related]
25. The identification of a common different gene expression signature in patients with colorectal cancer. Zhao ZW, Fan XX, Yang LL, Song JJ, Fang SJ, Tu JF, Chen MJ, Zheng LY, Wu FZ, Zhang DK, Ying XH, Ji JS. Math Biosci Eng; 2019 Apr 10; 16(4):2942-2958. PubMed ID: 31137244 [Abstract] [Full Text] [Related]
26. Identification of hub subnetwork based on topological features of genes in breast cancer. Zhuang DY, Jiang L, He QQ, Zhou P, Yue T. Int J Mol Med; 2015 Mar 10; 35(3):664-74. PubMed ID: 25573623 [Abstract] [Full Text] [Related]
30. Finding low-conductance sets with dense interactions (FLCD) for better protein complex prediction. Wang Y, Qian X. BMC Syst Biol; 2017 Mar 14; 11(Suppl 3):22. PubMed ID: 28361714 [Abstract] [Full Text] [Related]
31. Network-Based Enriched Gene Subnetwork Identification: A Game-Theoretic Approach. Razi A, Afghah F, Singh S, Varadan V. Biomed Eng Comput Biol; 2016 Mar 14; 7(Suppl 2):1-14. PubMed ID: 27081328 [Abstract] [Full Text] [Related]
32. Prediction and Validation of Hub Genes Associated with Colorectal Cancer by Integrating PPI Network and Gene Expression Data. Xiong Y, You W, Wang R, Peng L, Fu Z. Biomed Res Int; 2017 Mar 14; 2017():2421459. PubMed ID: 29209625 [Abstract] [Full Text] [Related]
33. Charting the molecular links between driver and susceptibility genes in colorectal cancer. Arroyo R, Duran-Frigola M, Berenguer C, Soler-López M, Aloy P. Biochem Biophys Res Commun; 2014 Mar 21; 445(4):734-8. PubMed ID: 24412244 [Abstract] [Full Text] [Related]
37. Benchmarking pathway interaction network for colorectal cancer to identify dysregulated pathways. Wang Q, Shi CJ, Lv SH. Braz J Med Biol Res; 2017 Mar 30; 50(5):e5981. PubMed ID: 28380197 [Abstract] [Full Text] [Related]
38. Identifying Significantly Perturbed Subnetworks in Cancer Using Multiple Protein-Protein Interaction Networks. Yang L, Chen R, Melendy T, Goodison S, Sun Y. Cancers (Basel); 2023 Aug 14; 15(16):. PubMed ID: 37627118 [Abstract] [Full Text] [Related]
39. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression. Zhang SW, Shao DD, Zhang SY, Wang YB. Mol Biosyst; 2014 Jun 14; 10(6):1400-8. PubMed ID: 24695957 [Abstract] [Full Text] [Related]
40. Identification of candidate biomarkers and therapeutic drugs of colorectal cancer by integrated bioinformatics analysis. Zheng Z, Xie J, Xiong L, Gao M, Qin L, Dai C, Liang Z, Wang Y, Xue J, Wang Q, Wang W, Li X. Med Oncol; 2020 Oct 19; 37(11):104. PubMed ID: 33078282 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]