These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
320 related items for PubMed ID: 19913026
1. Lability landscape and protease resistance of human insulin amyloid: a new insight into its molecular properties. Malisauskas M, Weise C, Yanamandra K, Wolf-Watz M, Morozova-Roche L. J Mol Biol; 2010 Feb 12; 396(1):60-74. PubMed ID: 19913026 [Abstract] [Full Text] [Related]
2. Kinetics of different processes in human insulin amyloid formation. Manno M, Craparo EF, Podestà A, Bulone D, Carrotta R, Martorana V, Tiana G, San Biagio PL. J Mol Biol; 2007 Feb 09; 366(1):258-74. PubMed ID: 17157312 [Abstract] [Full Text] [Related]
3. Oleic acid inhibits amyloid formation of the intermediate of alpha-lactalbumin at moderately acidic pH. Yang F, Zhang M, Zhou BR, Chen J, Liang Y. J Mol Biol; 2006 Sep 29; 362(4):821-34. PubMed ID: 16935298 [Abstract] [Full Text] [Related]
4. Mechanism of thioflavin T binding to amyloid fibrils. Khurana R, Coleman C, Ionescu-Zanetti C, Carter SA, Krishna V, Grover RK, Roy R, Singh S. J Struct Biol; 2005 Sep 29; 151(3):229-38. PubMed ID: 16125973 [Abstract] [Full Text] [Related]
5. Template-directed self-assembly and growth of insulin amyloid fibrils. Ha C, Park CB. Biotechnol Bioeng; 2005 Jun 30; 90(7):848-55. PubMed ID: 15803463 [Abstract] [Full Text] [Related]
6. Self-organization pathways and spatial heterogeneity in insulin amyloid fibril formation. Foderà V, Cataldo S, Librizzi F, Pignataro B, Spiccia P, Leone M. J Phys Chem B; 2009 Aug 06; 113(31):10830-7. PubMed ID: 19588943 [Abstract] [Full Text] [Related]
7. Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain. Zurdo J, Guijarro JI, Jiménez JL, Saibil HR, Dobson CM. J Mol Biol; 2001 Aug 10; 311(2):325-40. PubMed ID: 11478864 [Abstract] [Full Text] [Related]
8. Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways. Griffin MD, Mok ML, Wilson LM, Pham CL, Waddington LJ, Perugini MA, Howlett GJ. J Mol Biol; 2008 Jan 04; 375(1):240-56. PubMed ID: 18005990 [Abstract] [Full Text] [Related]
9. Vortex-induced formation of insulin amyloid superstructures probed by time-lapse atomic force microscopy and circular dichroism spectroscopy. Loksztejn A, Dzwolak W. J Mol Biol; 2010 Jan 22; 395(3):643-55. PubMed ID: 19891974 [Abstract] [Full Text] [Related]
10. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure. Gosal WS, Clark AH, Ross-Murphy SB. Biomacromolecules; 2004 Jan 22; 5(6):2408-19. PubMed ID: 15530058 [Abstract] [Full Text] [Related]
11. Characterization of the heterogeneity and specificity of interpolypeptide interactions in amyloid protofibrils by measurement of site-specific fluorescence anisotropy decay kinetics. Jha A, Udgaonkar JB, Krishnamoorthy G. J Mol Biol; 2009 Oct 30; 393(3):735-52. PubMed ID: 19716830 [Abstract] [Full Text] [Related]
12. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion. Mishra R, Sörgjerd K, Nyström S, Nordigården A, Yu YC, Hammarström P. J Mol Biol; 2007 Feb 23; 366(3):1029-44. PubMed ID: 17196616 [Abstract] [Full Text] [Related]
13. Amyloid fibrils formation and amorphous aggregation in concanavalin A. Vetri V, Canale C, Relini A, Librizzi F, Militello V, Gliozzi A, Leone M. Biophys Chem; 2007 Jan 23; 125(1):184-90. PubMed ID: 16934387 [Abstract] [Full Text] [Related]
14. On the binding of Thioflavin-T to HET-s amyloid fibrils assembled at pH 2. Sabaté R, Lascu I, Saupe SJ. J Struct Biol; 2008 Jun 23; 162(3):387-96. PubMed ID: 18406172 [Abstract] [Full Text] [Related]
15. Glucagon amyloid-like fibril morphology is selected via morphology-dependent growth inhibition. Andersen CB, Otzen D, Christiansen G, Rischel C. Biochemistry; 2007 Jun 19; 46(24):7314-24. PubMed ID: 17523599 [Abstract] [Full Text] [Related]
16. Secondary nucleation and accessible surface in insulin amyloid fibril formation. Foderà V, Librizzi F, Groenning M, van de Weert M, Leone M. J Phys Chem B; 2008 Mar 27; 112(12):3853-8. PubMed ID: 18311965 [Abstract] [Full Text] [Related]
17. Probing the mechanism of amyloidogenesis through a tandem repeat of the PI3-SH3 domain suggests a generic model for protein aggregation and fibril formation. Bader R, Bamford R, Zurdo J, Luisi BF, Dobson CM. J Mol Biol; 2006 Feb 10; 356(1):189-208. PubMed ID: 16364365 [Abstract] [Full Text] [Related]
18. A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis. Wilson LM, Mok YF, Binger KJ, Griffin MD, Mertens HD, Lin F, Wade JD, Gooley PR, Howlett GJ. J Mol Biol; 2007 Mar 09; 366(5):1639-51. PubMed ID: 17217959 [Abstract] [Full Text] [Related]
19. Effect of curcumin on amyloidogenic property of molten globule-like intermediate state of 2,5-diketo-D-gluconate reductase A. Sarkar N, Singh AN, Dubey VK. Biol Chem; 2009 Oct 09; 390(10):1057-61. PubMed ID: 19558331 [Abstract] [Full Text] [Related]
20. Characterization of amyloidogenesis of hen egg lysozyme in concentrated ethanol solution. Holley M, Eginton C, Schaefer D, Brown LR. Biochem Biophys Res Commun; 2008 Aug 15; 373(1):164-8. PubMed ID: 18558086 [Abstract] [Full Text] [Related] Page: [Next] [New Search]