These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Intrinsic determinants of retinal axon collateralization and arborization patterns. Bhide PG, Frost DO. J Comp Neurol; 1999 Aug 16; 411(1):119-29. PubMed ID: 10404111 [Abstract] [Full Text] [Related]
3. Transient retinal axon collaterals to visual and somatosensory thalamus in neonatal hamsters. Langdon RB, Frost DO. J Comp Neurol; 1991 Aug 08; 310(2):200-14. PubMed ID: 1955582 [Abstract] [Full Text] [Related]
4. Initial stages of retinofugal axon development in the hamster: evidence for two distinct modes of growth. Jhaveri S, Edwards MA, Schneider GE. Exp Brain Res; 1991 Aug 08; 87(2):371-82. PubMed ID: 1722759 [Abstract] [Full Text] [Related]
7. Early postnatal expression of L1 by retinal fibers in the optic tract and synaptic targets of the Syrian hamster. Lyckman AW, Moya KL, Confaloni A, Jhaveri S. J Comp Neurol; 2000 Jul 17; 423(1):40-51. PubMed ID: 10861535 [Abstract] [Full Text] [Related]
8. Target-controlled differentiation of axon terminals and synaptic organization. Campbell G, Frost DO. Proc Natl Acad Sci U S A; 1987 Oct 17; 84(19):6929-33. PubMed ID: 2443913 [Abstract] [Full Text] [Related]
9. The sequence of formation and development of corticostriate connections in mice. Sheth AN, McKee ML, Bhide PG. Dev Neurosci; 1998 Oct 17; 20(2-3):98-112. PubMed ID: 9691186 [Abstract] [Full Text] [Related]
14. Growth cone morphology varies with position in the developing mouse visual pathway from retina to first targets. Bovolenta P, Mason C. J Neurosci; 1987 May 01; 7(5):1447-60. PubMed ID: 3572487 [Abstract] [Full Text] [Related]
15. Postnatal development of the retinal projection to the nucleus of the optic tract and accessory optic nuclei in the hooded rat. Bai WZ, Meguro R, Kaiya T, Norita M. Arch Histol Cytol; 2001 Feb 01; 64(1):69-79. PubMed ID: 11310507 [Abstract] [Full Text] [Related]
16. Sharpening of topographical projections and maturation of geniculocortical axon arbors in the hamster. Naegele JR, Jhaveri S, Schneider GE. J Comp Neurol; 1988 Nov 22; 277(4):593-607. PubMed ID: 2463293 [Abstract] [Full Text] [Related]
17. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata. Dunlop SA, Tee LB, Lund RD, Beazley LD. J Comp Neurol; 1997 Jul 21; 384(1):26-40. PubMed ID: 9214538 [Abstract] [Full Text] [Related]
18. Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat's lateral geniculate nucleus. Sretavan DW, Shatz CJ. J Neurosci; 1986 Jan 21; 6(1):234-51. PubMed ID: 3944621 [Abstract] [Full Text] [Related]
19. Fibre organization of the monkey's optic tract: I. Segregation of functionally distinct optic axons. Reese BE, Cowey A. J Comp Neurol; 1990 May 15; 295(3):385-400. PubMed ID: 2351758 [Abstract] [Full Text] [Related]
20. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order. Nakamura H, O'Leary DD. J Neurosci; 1989 Nov 15; 9(11):3776-95. PubMed ID: 2585055 [Abstract] [Full Text] [Related] Page: [Next] [New Search]