These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


606 related items for PubMed ID: 1992047

  • 1. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport.
    Debiec H, Cross HS, Peterlik M.
    J Nutr; 1991 Jan; 121(1):105-13. PubMed ID: 1992047
    [Abstract] [Full Text] [Related]

  • 2. 1,25-Dihydroxycholecalciferol-related Na+/D-glucose transport in brush-border membrane vesicles from embryonic chick jejunum. Modulation by triiodothyronine.
    Debiec H, Cross HS, Peterlik M.
    Eur J Biochem; 1991 Nov 01; 201(3):709-13. PubMed ID: 1935965
    [Abstract] [Full Text] [Related]

  • 3. Effect of hyperglycemia on D-glucose transport across the brush-border and basolateral membrane of rat small intestine.
    Maenz DD, Cheeseman CI.
    Biochim Biophys Acta; 1986 Aug 21; 860(2):277-85. PubMed ID: 3741853
    [Abstract] [Full Text] [Related]

  • 4. Brush border membrane vesicles formed from human duodenal biopsies exhibit Na+-dependent concentrative L-leucine and D-glucose uptake.
    Harig JM, Soergel KH, Barry J, Ramaswamy K.
    Biochem Biophys Res Commun; 1988 Oct 14; 156(1):164-70. PubMed ID: 3178829
    [Abstract] [Full Text] [Related]

  • 5. Role of the electrochemical gradient for Na+ in D-glucose transport by mullet kidney.
    Lee SH, Pritchard JB.
    Am J Physiol; 1983 Mar 14; 244(3):F278-88. PubMed ID: 6299114
    [Abstract] [Full Text] [Related]

  • 6. Isolation and characterization of brush border membrane vesicles from bovine small intestine.
    Moe AJ, Pocius PA, Polan CE.
    J Nutr; 1985 Sep 14; 115(9):1173-9. PubMed ID: 4032065
    [Abstract] [Full Text] [Related]

  • 7. [Absorption of D-glucose by the small intestine of the human fetus (using brush border membrane vesicles of the jejunum)].
    Iioka H, Moriyama IS, Hino K, Itani Y, Ichijo M.
    Nihon Sanka Fujinka Gakkai Zasshi; 1987 Mar 14; 39(3):347-51. PubMed ID: 3559320
    [Abstract] [Full Text] [Related]

  • 8. Structural state of the Na+/D-glucose cotransporter in calf kidney brush-border membranes. Target size analysis of Na+-dependent phlorizin binding and Na+-dependent D-glucose transport.
    Lin JT, Szwarc K, Kinne R, Jung CY.
    Biochim Biophys Acta; 1984 Nov 07; 777(2):201-8. PubMed ID: 6148966
    [Abstract] [Full Text] [Related]

  • 9. Insulin regulates Na+/glucose cotransporter activity in rat small intestine.
    Fujii Y, Kaizuka M, Hashida F, Maruo J, Sato E, Yasuda H, Kurokawa T, Ishibashi S.
    Biochim Biophys Acta; 1991 Mar 18; 1063(1):90-4. PubMed ID: 2015265
    [Abstract] [Full Text] [Related]

  • 10. Sugar transport by brush border membrane vesicles isolated from human small intestine.
    Lúcke H, Berner W, Menge H, Murer H.
    Pflugers Arch; 1978 Mar 20; 373(3):243-8. PubMed ID: 567321
    [Abstract] [Full Text] [Related]

  • 11. D-Glucose transport in piglet jejunal brush-border membranes: insights from a disease model.
    Keljo DJ, MacLeod RJ, Perdue MH, Butler DG, Hamilton JR.
    Am J Physiol; 1985 Dec 20; 249(6 Pt 1):G751-60. PubMed ID: 3002183
    [Abstract] [Full Text] [Related]

  • 12. Developmental maturation of D-glucose transport by rat jejunal brush-border membrane vesicles.
    Ghishan FK, Wilson FA.
    Am J Physiol; 1985 Jan 20; 248(1 Pt 1):G87-92. PubMed ID: 4038441
    [Abstract] [Full Text] [Related]

  • 13. Enhanced glucose absorption in the rat small intestine following repeated doses of 5-fluorouracil.
    Tomimatsu T, Horie T.
    Chem Biol Interact; 2005 Aug 15; 155(3):129-39. PubMed ID: 15996645
    [Abstract] [Full Text] [Related]

  • 14. Improved stability of rabbit and rat intestinal brush border membrane vesicles using phospholipase inhibitors.
    Maenz DD, Chenu C, Bellemare F, Berteloot A.
    Biochim Biophys Acta; 1991 Nov 04; 1069(2):250-8. PubMed ID: 1932065
    [Abstract] [Full Text] [Related]

  • 15. Transport of riboflavin in human intestinal brush border membrane vesicles.
    Said HM, Arianas P.
    Gastroenterology; 1991 Jan 04; 100(1):82-8. PubMed ID: 1983852
    [Abstract] [Full Text] [Related]

  • 16. Increased sodium-dependent D-glucose transport in the jejunal brush-border membrane of spontaneously hypertensive rat.
    Vázquez CM, Coleto R, Zanetti R, Ruiz-Gutierrez V.
    Pflugers Arch; 1996 Jun 04; 432(2):329-35. PubMed ID: 8662284
    [Abstract] [Full Text] [Related]

  • 17. Sodium ion/L-lactate co-transport in rabbit small-intestinal brush-border-membrane vesicles.
    Hildmann B, Storelli C, Haase W, Barac-Nieto M, Murer H.
    Biochem J; 1980 Jan 15; 186(1):169-76. PubMed ID: 7370006
    [Abstract] [Full Text] [Related]

  • 18. Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-border microvilli and basal-lateral plasma membranes.
    Kinne R, Murer H, Kinne-Saffran E, Thees M, Sachs G.
    J Membr Biol; 1975 Jan 15; 21(3-4):375-95. PubMed ID: 1127684
    [Abstract] [Full Text] [Related]

  • 19. Proximo-distal gradient of Na+-dependent D-glucose transport activity in the brush border membrane vesicles from the human fetal small intestine.
    Malo C, Berteloot A.
    FEBS Lett; 1987 Aug 10; 220(1):201-5. PubMed ID: 3609312
    [Abstract] [Full Text] [Related]

  • 20. Na-dependent D-glucose and L-alanine transport in eel intestinal brush border membrane vesicles.
    Storelli C, Vilella S, Cassano G.
    Am J Physiol; 1986 Sep 10; 251(3 Pt 2):R463-9. PubMed ID: 3752280
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.