These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


291 related items for PubMed ID: 19925560

  • 1. Synergistic effects of bone marrow stromal cells and a Rho kinase (ROCK) inhibitor, fasudil on axon regeneration in rat spinal cord injury.
    Chiba Y, Kuroda S, Shichinohe H, Hokari M, Osanai T, Maruichi K, Yano S, Hida K, Iwasaki Y.
    Neuropathology; 2010 Jun; 30(3):241-50. PubMed ID: 19925560
    [Abstract] [Full Text] [Related]

  • 2. Treatment of rat spinal cord injury with a Rho-kinase inhibitor and bone marrow stromal cell transplantation.
    Furuya T, Hashimoto M, Koda M, Okawa A, Murata A, Takahashi K, Yamashita T, Yamazaki M.
    Brain Res; 2009 Oct 27; 1295():192-202. PubMed ID: 19651108
    [Abstract] [Full Text] [Related]

  • 3. Transplanted bone marrow stromal cells promote axonal regeneration and improve motor function in a rat spinal cord injury model.
    Chiba Y, Kuroda S, Maruichi K, Osanai T, Hokari M, Yano S, Shichinohe H, Hida K, Iwasaki Y.
    Neurosurgery; 2009 May 27; 64(5):991-9; discussion 999-1000. PubMed ID: 19404159
    [Abstract] [Full Text] [Related]

  • 4. DHAM-BMSC matrix promotes axonal regeneration and functional recovery after spinal cord injury in adult rats.
    Liang H, Liang P, Xu Y, Wu J, Liang T, Xu X.
    J Neurotrauma; 2009 Oct 27; 26(10):1745-57. PubMed ID: 19413502
    [Abstract] [Full Text] [Related]

  • 5. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A, Horii-Hayashi N, Sasagawa T, Shimizu T, Shigematsu H, Iwata E, Morimoto Y, Masuda K, Koizumi M, Akahane M, Nishi M, Tanaka Y.
    J Neurosurg Spine; 2017 Mar 27; 26(3):388-395. PubMed ID: 27885959
    [Abstract] [Full Text] [Related]

  • 6. Reduction of cystic cavity, promotion of axonal regeneration and sparing, and functional recovery with transplanted bone marrow stromal cell-derived Schwann cells after contusion injury to the adult rat spinal cord.
    Someya Y, Koda M, Dezawa M, Kadota T, Hashimoto M, Kamada T, Nishio Y, Kadota R, Mannoji C, Miyashita T, Okawa A, Yoshinaga K, Yamazaki M.
    J Neurosurg Spine; 2008 Dec 27; 9(6):600-10. PubMed ID: 19035756
    [Abstract] [Full Text] [Related]

  • 7. Combination of bone marrow stromal cell transplantation with mobilization by granulocyte-colony stimulating factor promotes functional recovery after spinal cord transection.
    Luo J, Zhang HT, Jiang XD, Xue S, Ke YQ.
    Acta Neurochir (Wien); 2009 Nov 27; 151(11):1483-92. PubMed ID: 19499175
    [Abstract] [Full Text] [Related]

  • 8. Delayed treatment with Rho-kinase inhibitor does not enhance axonal regeneration or functional recovery after spinal cord injury in rats.
    Nishio Y, Koda M, Kitajo K, Seto M, Hata K, Taniguchi J, Moriya H, Fujitani M, Kubo T, Yamashita T.
    Exp Neurol; 2006 Aug 27; 200(2):392-7. PubMed ID: 16624299
    [Abstract] [Full Text] [Related]

  • 9. Neuroprotective and growth-promoting effects of bone marrow stromal cells after cervical spinal cord injury in adult rats.
    Novikova LN, Brohlin M, Kingham PJ, Novikov LN, Wiberg M.
    Cytotherapy; 2011 Aug 27; 13(7):873-87. PubMed ID: 21521004
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. In vivo fluorescence tracking of bone marrow stromal cells transplanted into a pneumatic injury model of rat spinal cord.
    Yano S, Kuroda S, Lee JB, Shichinohe H, Seki T, Ikeda J, Nishimura G, Hida K, Tamura M, Iwasaki Y.
    J Neurotrauma; 2005 Aug 27; 22(8):907-18. PubMed ID: 16083357
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Fibrin matrix provides a suitable scaffold for bone marrow stromal cells transplanted into injured spinal cord: a novel material for CNS tissue engineering.
    Itosaka H, Kuroda S, Shichinohe H, Yasuda H, Yano S, Kamei S, Kawamura R, Hida K, Iwasaki Y.
    Neuropathology; 2009 Jun 27; 29(3):248-57. PubMed ID: 18992011
    [Abstract] [Full Text] [Related]

  • 15. ROCK inhibition with fasudil promotes early functional recovery of spinal cord injury in rats by enhancing microglia phagocytosis.
    Fu PC, Tang RH, Wan Y, Xie MJ, Wang W, Luo X, Yu ZY.
    J Huazhong Univ Sci Technolog Med Sci; 2016 Feb 27; 36(1):31-36. PubMed ID: 26838736
    [Abstract] [Full Text] [Related]

  • 16. Combination of NEP 1-40 infusion and bone marrow-derived neurospheres transplantation inhibit glial scar formation and promote functional recovery after rat spinal cord injury.
    Zhilai Z, Hui Z, Yinhai C, Zhong C, Shaoxiong M, Bo Y, Anmin J.
    Neurol India; 2011 Feb 27; 59(4):579-85. PubMed ID: 21891937
    [Abstract] [Full Text] [Related]

  • 17. Bone marrow stromal cell transplantation preserves gammaaminobutyric acid receptor function in the injured spinal cord.
    Yano S, Kuroda S, Shichinohe H, Seki T, Ohnishi T, Tamagami H, Hida K, Iwasaki Y.
    J Neurotrauma; 2006 Nov 27; 23(11):1682-92. PubMed ID: 17115913
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Priming Wharton's jelly-derived mesenchymal stromal/stem cells with ROCK inhibitor improves recovery in an intracerebral hemorrhage model.
    Lee HS, Kim KS, Lim HS, Choi M, Kim HK, Ahn HY, Shin JC, Joe YA.
    J Cell Biochem; 2015 Feb 27; 116(2):310-9. PubMed ID: 25185536
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.