These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 19925891

  • 1. Synchrotron X-ray diffraction study of load partitioning during elastic deformation of bovine dentin.
    Deymier-Black AC, Almer JD, Stock SR, Haeffner DR, Dunand DC.
    Acta Biomater; 2010 Jun; 6(6):2172-80. PubMed ID: 19925891
    [Abstract] [Full Text] [Related]

  • 2. Variability in the nanoscale deformation of hydroxyapatite during compressive loading in bovine bone.
    Singhal A, Almer JD, Dunand DC.
    Acta Biomater; 2012 Jul; 8(7):2747-58. PubMed ID: 22465576
    [Abstract] [Full Text] [Related]

  • 3. Effect of high-energy X-ray irradiation on creep mechanisms in bone and dentin.
    Deymier-Black AC, Singhal A, Yuan F, Almer JD, Brinson LC, Dunand DC.
    J Mech Behav Biomed Mater; 2013 May; 21():17-31. PubMed ID: 23454365
    [Abstract] [Full Text] [Related]

  • 4. Effect of stress and temperature on the micromechanics of creep in highly irradiated bone and dentin.
    Singhal A, Deymier-Black AC, Almer JD, Dunand DC.
    Mater Sci Eng C Mater Biol Appl; 2013 Apr 01; 33(3):1467-75. PubMed ID: 23827597
    [Abstract] [Full Text] [Related]

  • 5. Multiscale modelling and diffraction-based characterization of elastic behaviour of human dentine.
    Sui T, Sandholzer MA, Baimpas N, Dolbnya IP, Walmsley A, Lumley PJ, Landini G, Korsunsky AM.
    Acta Biomater; 2013 Aug 01; 9(8):7937-47. PubMed ID: 23602879
    [Abstract] [Full Text] [Related]

  • 6. High energy X-ray scattering quantification of in situ-loading-related strain gradients spanning the dentinoenamel junction (DEJ) in bovine tooth specimens.
    Almer JD, Stock SR.
    J Biomech; 2010 Aug 26; 43(12):2294-300. PubMed ID: 20541209
    [Abstract] [Full Text] [Related]

  • 7. Effect of X-ray irradiation on the elastic strain evolution in the mineral phase of bovine bone under creep and load-free conditions.
    Deymier-Black AC, Singhal A, Almer JD, Dunand DC.
    Acta Biomater; 2013 Feb 26; 9(2):5305-12. PubMed ID: 22871638
    [Abstract] [Full Text] [Related]

  • 8. Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone.
    Deymier-Black AC, Yuan F, Singhal A, Almer JD, Brinson LC, Dunand DC.
    Acta Biomater; 2012 Jan 26; 8(1):253-61. PubMed ID: 21878399
    [Abstract] [Full Text] [Related]

  • 9. Effect of high-energy X-ray doses on bone elastic properties and residual strains.
    Singhal A, Deymier-Black AC, Almer JD, Dunand DC.
    J Mech Behav Biomed Mater; 2011 Nov 26; 4(8):1774-86. PubMed ID: 22098877
    [Abstract] [Full Text] [Related]

  • 10. A cross-linking model for estimating Young's modulus of artificial bone tissue grown on carbon nanotube scaffold.
    Saffar KP, Arshi AR, JamilPour N, Najafi AR, Rouhi G, Sudak L.
    J Biomed Mater Res A; 2010 Aug 26; 94(2):594-602. PubMed ID: 20198697
    [Abstract] [Full Text] [Related]

  • 11. Variability in the elastic properties of bovine dentin at multiple length scales.
    Deymier-Black AC, Almer JD, Stock SR, Dunand DC.
    J Mech Behav Biomed Mater; 2012 Jan 26; 5(1):71-81. PubMed ID: 22100081
    [Abstract] [Full Text] [Related]

  • 12. Elastic strains in antler trabecular bone determined by synchrotron X-ray diffraction.
    Akhtar R, Daymond MR, Almer JD, Mummery PM.
    Acta Biomater; 2008 Nov 26; 4(6):1677-87. PubMed ID: 18555757
    [Abstract] [Full Text] [Related]

  • 13. A method on strain measurement of HAP in cortical bone from diffusive profile of X-ray diffraction.
    Fujisaki K, Tadano S, Sasaki N.
    J Biomech; 2006 Nov 26; 39(3):579-86. PubMed ID: 16389098
    [Abstract] [Full Text] [Related]

  • 14. Stress-strain analysis for evaluating the effect of the orientation of dentin tubules on their mechanical properties and deformation behavior.
    Han CF, Wu BH, Chung CJ, Chuang SF, Li WL, Lin JF.
    J Mech Behav Biomed Mater; 2012 Aug 26; 12():1-8. PubMed ID: 22659363
    [Abstract] [Full Text] [Related]

  • 15. Hardness, elasticity and ultrastructure of primary tooth dentin bonded with a self-reinforcing one-step self-etch adhesive.
    Hosoya Y, Tay FR, Ono T, Miyazaki M.
    J Dent; 2010 Mar 26; 38(3):214-21. PubMed ID: 19883724
    [Abstract] [Full Text] [Related]

  • 16. Structure, property, and function of sheepshead (Archosargus probatocephalus) teeth.
    Deang JF, Persons AK, Oppedal AL, Rhee H, Moser RD, Horstemeyer MF.
    Arch Oral Biol; 2018 May 26; 89():1-8. PubMed ID: 29407634
    [Abstract] [Full Text] [Related]

  • 17. Role of the nanoscale interfacial arrangement in mechanical strength of tropocollagen-hydroxyapatite-based hard biomaterials.
    Dubey DK, Tomar V.
    Acta Biomater; 2009 Sep 26; 5(7):2704-16. PubMed ID: 19345162
    [Abstract] [Full Text] [Related]

  • 18. Young's modulus and hardness of shark tooth biomaterials.
    Whitenack LB, Simkins DC, Motta PJ, Hirai M, Kumar A.
    Arch Oral Biol; 2010 Mar 26; 55(3):203-9. PubMed ID: 20102762
    [Abstract] [Full Text] [Related]

  • 19. Orientation and deformation of mineral crystals in tooth surfaces.
    Fujisaki K, Todoh M, Niida A, Shibuya R, Kitami S, Tadano S.
    J Mech Behav Biomed Mater; 2012 Jun 26; 10():176-82. PubMed ID: 22520429
    [Abstract] [Full Text] [Related]

  • 20. Internal strains and stresses measured in cortical bone via high-energy X-ray diffraction.
    Almer JD, Stock SR.
    J Struct Biol; 2005 Oct 26; 152(1):14-27. PubMed ID: 16183302
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.