These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
239 related items for PubMed ID: 19928800
21. Highly specific capture and direct MALDI MS analysis of phosphopeptides by zirconium phosphonate on self-assembled monolayers. Hoang T, Roth U, Kowalewski K, Belisle C, Steinert K, Karas M. Anal Chem; 2010 Jan 01; 82(1):219-28. PubMed ID: 19968246 [Abstract] [Full Text] [Related]
22. Facile synthesis of multivalent nitrilotriacetic acid (NTA) and NTA conjugates for analytical and drug delivery applications. Huang Z, Park JI, Watson DS, Hwang P, Szoka FC. Bioconjug Chem; 2006 Jan 01; 17(6):1592-600. PubMed ID: 17105240 [Abstract] [Full Text] [Related]
23. Stable supported lipid bilayers on zirconium phosphonate surfaces. Fabre RM, Talham DR. Langmuir; 2009 Nov 03; 25(21):12644-52. PubMed ID: 19711922 [Abstract] [Full Text] [Related]
24. XPS investigation of DNA binding to zirconium-phosphonate surfaces. Lane SM, Monot J, Petit M, Bujoli B, Talham DR. Colloids Surf B Biointerfaces; 2007 Jul 01; 58(1):34-8. PubMed ID: 17275268 [Abstract] [Full Text] [Related]
25. Affibody protein capture microarrays: synthesis and evaluation of random and directed immobilization of affibody molecules. Renberg B, Shiroyama I, Engfeldt T, Nygren PK, Karlström AE. Anal Biochem; 2005 Jun 15; 341(2):334-43. PubMed ID: 15907880 [Abstract] [Full Text] [Related]
26. Characterization of the electron transfer of a ferrocene redox probe and a histidine-tagged hemoprotein specifically bound to a nitrilotriacetic-terminated self-assembled monolayer. Balland V, Lecomte S, Limoges B. Langmuir; 2009 Jun 02; 25(11):6532-42. PubMed ID: 19419181 [Abstract] [Full Text] [Related]
27. Reversible immobilization of engineered molecules by Ni-NTA chelators. Maly J, Di Meo C, De Francesco M, Masci A, Masojidek J, Sugiura M, Volpe A, Pilloton R. Bioelectrochemistry; 2004 Jun 02; 63(1-2):271-5. PubMed ID: 15110286 [Abstract] [Full Text] [Related]
28. Metal phosphonates applied to biotechnologies: a novel approach to oligonucleotide microarrays. Bujoli B, Lane SM, Nonglaton G, Pipelier M, Léger J, Talham DR, Tellier C. Chemistry; 2005 Mar 18; 11(7):1980-8. PubMed ID: 15669062 [Abstract] [Full Text] [Related]
29. A metal-chelating piezoelectric sensor chip for direct detection and oriented immobilization of polyHis-tagged proteins. Chen HM, Wang WC, Chen SH. Biotechnol Prog; 2004 Mar 18; 20(4):1237-44. PubMed ID: 15296454 [Abstract] [Full Text] [Related]
30. Specific and stable fluorescence labeling of histidine-tagged proteins for dissecting multi-protein complex formation. Lata S, Gavutis M, Tampé R, Piehler J. J Am Chem Soc; 2006 Feb 22; 128(7):2365-72. PubMed ID: 16478192 [Abstract] [Full Text] [Related]
31. Single-step synthesis and characterization of biotinylated nitrilotriacetic acid, a unique reagent for the detection of histidine-tagged proteins immobilized on nitrocellulose. McMahan SA, Burgess RR. Anal Biochem; 1996 Apr 05; 236(1):101-6. PubMed ID: 8619473 [Abstract] [Full Text] [Related]
32. Electrogeneration of a poly(pyrrole)-NTA chelator film for a reversible oriented immobilization of histidine-tagged proteins. Haddour N, Cosnier S, Gondran C. J Am Chem Soc; 2005 Apr 27; 127(16):5752-3. PubMed ID: 15839649 [Abstract] [Full Text] [Related]
33. A nickel chelate microtiter plate assay for six histidine-containing proteins. Paborsky LR, Dunn KE, Gibbs CS, Dougherty JP. Anal Biochem; 1996 Feb 01; 234(1):60-5. PubMed ID: 8742083 [Abstract] [Full Text] [Related]
34. BIACORE analysis of histidine-tagged proteins using a chelating NTA sensor chip. Nieba L, Nieba-Axmann SE, Persson A, Hämäläinen M, Edebratt F, Hansson A, Lidholm J, Magnusson K, Karlsson AF, Plückthun A. Anal Biochem; 1997 Oct 15; 252(2):217-28. PubMed ID: 9344407 [Abstract] [Full Text] [Related]
35. Insight into the complexation mode of bis(nitrilotriacetic acid) (NTA) ligands with Ni(2+) involved in the labeling of histidine-tagged proteins. Brellier M, Barlaam B, Mioskowski C, Baati R. Chemistry; 2009 Nov 23; 15(46):12689-701. PubMed ID: 19876964 [Abstract] [Full Text] [Related]
36. Immobilization of histidine-tagged proteins by magnetic nanoparticles encapsulated with nitrilotriacetic acid (NTA)-phospholipids micelle. Lim YT, Lee KY, Lee K, Chung BH. Biochem Biophys Res Commun; 2006 Jun 09; 344(3):926-30. PubMed ID: 16631602 [Abstract] [Full Text] [Related]
37. The modification of quantum dot probes used for the targeted imaging of his-tagged fusion proteins. Bae PK, Kim KN, Lee SJ, Chang HJ, Lee CK, Park JK. Biomaterials; 2009 Feb 09; 30(5):836-42. PubMed ID: 19027151 [Abstract] [Full Text] [Related]
38. Poly(dG) spacers lead to increased surface coverage of DNA probes: an XPS study of oligonucleotide binding to zirconium phosphonate modified surfaces. Lane SM, Monot J, Petit M, Tellier C, Bujoli B, Talham DR. Langmuir; 2008 Jul 15; 24(14):7394-9. PubMed ID: 18547070 [Abstract] [Full Text] [Related]
39. Facile fabrication of recyclable and active nanobiocatalyst: purification and immobilization of enzyme in one pot with Ni-NTA functionalized magnetic nanoparticle. Wang W, Wang DI, Li Z. Chem Commun (Camb); 2011 Jul 28; 47(28):8115-7. PubMed ID: 21687876 [Abstract] [Full Text] [Related]
40. Anchoring of histidine-tagged proteins to molecular printboards: self-assembly, thermodynamic modeling, and patterning. Ludden MJ, Mulder A, Schulze K, Subramaniam V, Tampé R, Huskens J. Chemistry; 2008 Jul 28; 14(7):2044-51. PubMed ID: 18189256 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]