These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


616 related items for PubMed ID: 19928829

  • 1. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels.
    Morris AJ, Meyer GJ, Fujita E.
    Acc Chem Res; 2009 Dec 21; 42(12):1983-94. PubMed ID: 19928829
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Solar fuels via artificial photosynthesis.
    Gust D, Moore TA, Moore AL.
    Acc Chem Res; 2009 Dec 21; 42(12):1890-8. PubMed ID: 19902921
    [Abstract] [Full Text] [Related]

  • 4. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A, Anderlund M, Johansson O, Lindblad P, Lomoth R, Polivka T, Ott S, Stensjö K, Styring S, Sundström V, Hammarström L.
    Acc Chem Res; 2009 Dec 21; 42(12):1899-909. PubMed ID: 19757805
    [Abstract] [Full Text] [Related]

  • 5. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ, Lee SH, Maeda K, Mallouk TE.
    Acc Chem Res; 2009 Dec 21; 42(12):1966-73. PubMed ID: 19905000
    [Abstract] [Full Text] [Related]

  • 6. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS, Dhagat NN.
    Indian J Environ Health; 2001 Apr 21; 43(2):1-82. PubMed ID: 12397675
    [Abstract] [Full Text] [Related]

  • 7. Oxygen-oxygen bond formation pathways promoted by ruthenium complexes.
    Romain S, Vigara L, Llobet A.
    Acc Chem Res; 2009 Dec 21; 42(12):1944-53. PubMed ID: 19908829
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L.
    Acc Chem Res; 2015 Mar 17; 48(3):840-50. PubMed ID: 25675365
    [Abstract] [Full Text] [Related]

  • 17. Designing catalysts for functionalization of unactivated C-H bonds based on the CH activation reaction.
    Hashiguchi BG, Bischof SM, Konnick MM, Periana RA.
    Acc Chem Res; 2012 Jun 19; 45(6):885-98. PubMed ID: 22482496
    [Abstract] [Full Text] [Related]

  • 18. Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights.
    Cole EB, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB.
    J Am Chem Soc; 2010 Aug 25; 132(33):11539-51. PubMed ID: 20666494
    [Abstract] [Full Text] [Related]

  • 19. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO2 Reduction Using Mn, Re, and Ru Catalysts.
    Fujita E, Grills DC, Manbeck GF, Polyansky DE.
    Acc Chem Res; 2022 Mar 01; 55(5):616-628. PubMed ID: 35133133
    [Abstract] [Full Text] [Related]

  • 20. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C, Robert M, Savéant JM.
    Acc Chem Res; 2015 Dec 15; 48(12):2996-3006. PubMed ID: 26559053
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.