These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 19928836

  • 1. Docking ligands into flexible and solvated macromolecules. 5. Force-field-based prediction of binding affinities of ligands to proteins.
    Englebienne P, Moitessier N.
    J Chem Inf Model; 2009 Nov; 49(11):2564-71. PubMed ID: 19928836
    [Abstract] [Full Text] [Related]

  • 2. Docking ligands into flexible and solvated macromolecules. 4. Are popular scoring functions accurate for this class of proteins?
    Englebienne P, Moitessier N.
    J Chem Inf Model; 2009 Jun; 49(6):1568-80. PubMed ID: 19445499
    [Abstract] [Full Text] [Related]

  • 3. Investigation of MM-PBSA rescoring of docking poses.
    Thompson DC, Humblet C, Joseph-McCarthy D.
    J Chem Inf Model; 2008 May; 48(5):1081-91. PubMed ID: 18465849
    [Abstract] [Full Text] [Related]

  • 4. FURSMASA: a new approach to rapid scoring functions that uses a MD-averaged potential energy grid and a solvent-accessible surface area term with parameters GA fit to experimental data.
    Pearlman DA, Rao BG, Charifson P.
    Proteins; 2008 May 15; 71(3):1519-38. PubMed ID: 18300249
    [Abstract] [Full Text] [Related]

  • 5. Assessing scoring functions for protein-ligand interactions.
    Ferrara P, Gohlke H, Price DJ, Klebe G, Brooks CL.
    J Med Chem; 2004 Jun 03; 47(12):3032-47. PubMed ID: 15163185
    [Abstract] [Full Text] [Related]

  • 6. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV, Novikov FN, Stroylov VS, Kulkov V, Chilov GG.
    J Chem Inf Model; 2008 Dec 03; 48(12):2371-85. PubMed ID: 19007114
    [Abstract] [Full Text] [Related]

  • 7. Optimizing the signal-to-noise ratio of scoring functions for protein--ligand docking.
    Seifert MH.
    J Chem Inf Model; 2008 Mar 03; 48(3):602-12. PubMed ID: 18293951
    [Abstract] [Full Text] [Related]

  • 8. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance.
    Perola E, Walters WP, Charifson PS.
    Proteins; 2004 Aug 01; 56(2):235-49. PubMed ID: 15211508
    [Abstract] [Full Text] [Related]

  • 9. New scoring functions for virtual screening from molecular dynamics simulations with a quantum-refined force-field (QRFF-MD). Application to cyclin-dependent kinase 2.
    Ferrara P, Curioni A, Vangrevelinghe E, Meyer T, Mordasini T, Andreoni W, Acklin P, Jacoby E.
    J Chem Inf Model; 2006 Aug 01; 46(1):254-63. PubMed ID: 16426061
    [Abstract] [Full Text] [Related]

  • 10. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN, Abagyan RA.
    J Mol Biol; 2004 Mar 12; 337(1):209-25. PubMed ID: 15001363
    [Abstract] [Full Text] [Related]

  • 11. Development and evaluation of a generic evolutionary method for protein-ligand docking.
    Yang JM.
    J Comput Chem; 2004 Apr 30; 25(6):843-57. PubMed ID: 15011256
    [Abstract] [Full Text] [Related]

  • 12. Comparative evaluation of 11 scoring functions for molecular docking.
    Wang R, Lu Y, Wang S.
    J Med Chem; 2003 Jun 05; 46(12):2287-303. PubMed ID: 12773034
    [Abstract] [Full Text] [Related]

  • 13. An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes.
    Wang R, Lu Y, Fang X, Wang S.
    J Chem Inf Comput Sci; 2004 Jun 05; 44(6):2114-25. PubMed ID: 15554682
    [Abstract] [Full Text] [Related]

  • 14. The consequences of scoring docked ligand conformations using free energy correlations.
    Spyrakis F, Amadasi A, Fornabaio M, Abraham DJ, Mozzarelli A, Kellogg GE, Cozzini P.
    Eur J Med Chem; 2007 Jul 05; 42(7):921-33. PubMed ID: 17346861
    [Abstract] [Full Text] [Related]

  • 15. Scoring ligand similarity in structure-based virtual screening.
    Zavodszky MI, Rohatgi A, Van Voorst JR, Yan H, Kuhn LA.
    J Mol Recognit; 2009 Jul 05; 22(4):280-92. PubMed ID: 19235177
    [Abstract] [Full Text] [Related]

  • 16. Testing assumptions and hypotheses for rescoring success in protein-ligand docking.
    O'Boyle NM, Liebeschuetz JW, Cole JC.
    J Chem Inf Model; 2009 Aug 05; 49(8):1871-8. PubMed ID: 19645429
    [Abstract] [Full Text] [Related]

  • 17. Binding energy landscape analysis helps to discriminate true hits from high-scoring decoys in virtual screening.
    Wei D, Zheng H, Su N, Deng M, Lai L.
    J Chem Inf Model; 2010 Oct 25; 50(10):1855-64. PubMed ID: 20968314
    [Abstract] [Full Text] [Related]

  • 18. DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction.
    Velec HF, Gohlke H, Klebe G.
    J Med Chem; 2005 Oct 06; 48(20):6296-303. PubMed ID: 16190756
    [Abstract] [Full Text] [Related]

  • 19. A general and fast scoring function for protein-ligand interactions: a simplified potential approach.
    Muegge I, Martin YC.
    J Med Chem; 1999 Mar 11; 42(5):791-804. PubMed ID: 10072678
    [Abstract] [Full Text] [Related]

  • 20. Impact of scoring functions on enrichment in docking-based virtual screening: an application study on renin inhibitors.
    Krovat EM, Langer T.
    J Chem Inf Comput Sci; 2004 Mar 11; 44(3):1123-9. PubMed ID: 15154781
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.