These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis. Zhang Z, Song Y, Zhao X, Zhang X, Fermin C, Chen Y. Development; 2002 Sep; 129(17):4135-46. PubMed ID: 12163415 [Abstract] [Full Text] [Related]
4. Altered FGF Signaling Pathways Impair Cell Proliferation and Elevation of Palate Shelves. Wu W, Gu S, Sun C, He W, Xie X, Li X, Ye W, Qin C, Chen Y, Xiao J, Liu C. PLoS One; 2015 Sep; 10(9):e0136951. PubMed ID: 26332583 [Abstract] [Full Text] [Related]
5. A Shh-Foxf-Fgf18-Shh Molecular Circuit Regulating Palate Development. Xu J, Liu H, Lan Y, Aronow BJ, Kalinichenko VV, Jiang R. PLoS Genet; 2016 Jan; 12(1):e1005769. PubMed ID: 26745863 [Abstract] [Full Text] [Related]
6. A dosage-dependent role for Spry2 in growth and patterning during palate development. Welsh IC, Hagge-Greenberg A, O'Brien TP. Mech Dev; 2007 Jan; 124(9-10):746-61. PubMed ID: 17693063 [Abstract] [Full Text] [Related]
7. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Ito Y, Yeo JY, Chytil A, Han J, Bringas P, Nakajima A, Shuler CF, Moses HL, Chai Y. Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342 [Abstract] [Full Text] [Related]
8. Type 1 fibroblast growth factor receptor in cranial neural crest cell-derived mesenchyme is required for palatogenesis. Wang C, Chang JY, Yang C, Huang Y, Liu J, You P, McKeehan WL, Wang F, Li X. J Biol Chem; 2013 Jul 26; 288(30):22174-83. PubMed ID: 23754280 [Abstract] [Full Text] [Related]
13. Toward pathogenesis of Apert cleft palate: FGF, FGFR, and TGF beta genes are differentially expressed in sequential stages of human palatal shelf fusion. Britto JA, Evans RD, Hayward RD, Jones BM. Cleft Palate Craniofac J; 2002 May 26; 39(3):332-40. PubMed ID: 12019011 [Abstract] [Full Text] [Related]
14. The inductive role of Wnt-β-Catenin signaling in the formation of oral apparatus. Lin C, Fisher AV, Yin Y, Maruyama T, Veith GM, Dhandha M, Huang GJ, Hsu W, Ma L. Dev Biol; 2011 Aug 01; 356(1):40-50. PubMed ID: 21600200 [Abstract] [Full Text] [Related]
15. The canonical Wnt signaling activator, R-spondin2, regulates craniofacial patterning and morphogenesis within the branchial arch through ectodermal-mesenchymal interaction. Jin YR, Turcotte TJ, Crocker AL, Han XH, Yoon JK. Dev Biol; 2011 Apr 01; 352(1):1-13. PubMed ID: 21237142 [Abstract] [Full Text] [Related]
17. Transforming Growth Factor-Beta and Sonic Hedgehog Signaling in Palatal Epithelium Regulate Tenascin-C Expression in Palatal Mesenchyme During Soft Palate Development. Ohki S, Oka K, Ogata K, Okuhara S, Rikitake M, Toda-Nakamura M, Tamura S, Ozaki M, Iseki S, Sakai T. Front Physiol; 2020 Apr 01; 11():532. PubMed ID: 32581832 [Abstract] [Full Text] [Related]
18. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation. Almaidhan A, Cesario J, Landin Malt A, Zhao Y, Sharma N, Choi V, Jeong J. BMC Dev Biol; 2014 Jan 17; 14():3. PubMed ID: 24433583 [Abstract] [Full Text] [Related]
19. Cranial neural crest deletion of VEGFa causes cleft palate with aberrant vascular and bone development. Hill C, Jacobs B, Kennedy L, Rohde S, Zhou B, Baldwin S, Goudy S. Cell Tissue Res; 2015 Sep 17; 361(3):711-22. PubMed ID: 25759071 [Abstract] [Full Text] [Related]
20. Molecular and Cellular Mechanisms of Palate Development. Li C, Lan Y, Jiang R. J Dent Res; 2017 Oct 17; 96(11):1184-1191. PubMed ID: 28745929 [Abstract] [Full Text] [Related] Page: [Next] [New Search]