These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


330 related items for PubMed ID: 19934017

  • 1. Indirect modulation of Shh signaling by Dlx5 affects the oral-nasal patterning of palate and rescues cleft palate in Msx1-null mice.
    Han J, Mayo J, Xu X, Li J, Bringas P, Maas RL, Rubenstein JL, Chai Y.
    Development; 2009 Dec; 136(24):4225-33. PubMed ID: 19934017
    [Abstract] [Full Text] [Related]

  • 2. Pax9 regulates a molecular network involving Bmp4, Fgf10, Shh signaling and the Osr2 transcription factor to control palate morphogenesis.
    Zhou J, Gao Y, Lan Y, Jia S, Jiang R.
    Development; 2013 Dec; 140(23):4709-18. PubMed ID: 24173808
    [Abstract] [Full Text] [Related]

  • 3. Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis.
    Zhang Z, Song Y, Zhao X, Zhang X, Fermin C, Chen Y.
    Development; 2002 Sep; 129(17):4135-46. PubMed ID: 12163415
    [Abstract] [Full Text] [Related]

  • 4. Altered FGF Signaling Pathways Impair Cell Proliferation and Elevation of Palate Shelves.
    Wu W, Gu S, Sun C, He W, Xie X, Li X, Ye W, Qin C, Chen Y, Xiao J, Liu C.
    PLoS One; 2015 Sep; 10(9):e0136951. PubMed ID: 26332583
    [Abstract] [Full Text] [Related]

  • 5. A Shh-Foxf-Fgf18-Shh Molecular Circuit Regulating Palate Development.
    Xu J, Liu H, Lan Y, Aronow BJ, Kalinichenko VV, Jiang R.
    PLoS Genet; 2016 Jan; 12(1):e1005769. PubMed ID: 26745863
    [Abstract] [Full Text] [Related]

  • 6. A dosage-dependent role for Spry2 in growth and patterning during palate development.
    Welsh IC, Hagge-Greenberg A, O'Brien TP.
    Mech Dev; 2007 Jan; 124(9-10):746-61. PubMed ID: 17693063
    [Abstract] [Full Text] [Related]

  • 7. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y, Yeo JY, Chytil A, Han J, Bringas P, Nakajima A, Shuler CF, Moses HL, Chai Y.
    Development; 2003 Nov; 130(21):5269-80. PubMed ID: 12975342
    [Abstract] [Full Text] [Related]

  • 8. Type 1 fibroblast growth factor receptor in cranial neural crest cell-derived mesenchyme is required for palatogenesis.
    Wang C, Chang JY, Yang C, Huang Y, Liu J, You P, McKeehan WL, Wang F, Li X.
    J Biol Chem; 2013 Jul 26; 288(30):22174-83. PubMed ID: 23754280
    [Abstract] [Full Text] [Related]

  • 9. Mesenchymal fibroblast growth factor receptor signaling regulates palatal shelf elevation during secondary palate formation.
    Yu K, Karuppaiah K, Ornitz DM.
    Dev Dyn; 2015 Nov 26; 244(11):1427-38. PubMed ID: 26250517
    [Abstract] [Full Text] [Related]

  • 10. Hedgehog signalling in development of the secondary palate.
    Cobourne MT, Green JB.
    Front Oral Biol; 2012 Nov 26; 16():52-9. PubMed ID: 22759669
    [Abstract] [Full Text] [Related]

  • 11. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice.
    Li C, Lan Y, Krumlauf R, Jiang R.
    J Dent Res; 2017 Oct 26; 96(11):1273-1281. PubMed ID: 28692808
    [Abstract] [Full Text] [Related]

  • 12. Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factor β (TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis.
    Iwata J, Tung L, Urata M, Hacia JG, Pelikan R, Suzuki A, Ramenzoni L, Chaudhry O, Parada C, Sanchez-Lara PA, Chai Y.
    J Biol Chem; 2012 Jan 20; 287(4):2353-63. PubMed ID: 22123828
    [Abstract] [Full Text] [Related]

  • 13. Toward pathogenesis of Apert cleft palate: FGF, FGFR, and TGF beta genes are differentially expressed in sequential stages of human palatal shelf fusion.
    Britto JA, Evans RD, Hayward RD, Jones BM.
    Cleft Palate Craniofac J; 2002 May 20; 39(3):332-40. PubMed ID: 12019011
    [Abstract] [Full Text] [Related]

  • 14. The inductive role of Wnt-β-Catenin signaling in the formation of oral apparatus.
    Lin C, Fisher AV, Yin Y, Maruyama T, Veith GM, Dhandha M, Huang GJ, Hsu W, Ma L.
    Dev Biol; 2011 Aug 01; 356(1):40-50. PubMed ID: 21600200
    [Abstract] [Full Text] [Related]

  • 15. The canonical Wnt signaling activator, R-spondin2, regulates craniofacial patterning and morphogenesis within the branchial arch through ectodermal-mesenchymal interaction.
    Jin YR, Turcotte TJ, Crocker AL, Han XH, Yoon JK.
    Dev Biol; 2011 Apr 01; 352(1):1-13. PubMed ID: 21237142
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Transforming Growth Factor-Beta and Sonic Hedgehog Signaling in Palatal Epithelium Regulate Tenascin-C Expression in Palatal Mesenchyme During Soft Palate Development.
    Ohki S, Oka K, Ogata K, Okuhara S, Rikitake M, Toda-Nakamura M, Tamura S, Ozaki M, Iseki S, Sakai T.
    Front Physiol; 2020 Apr 01; 11():532. PubMed ID: 32581832
    [Abstract] [Full Text] [Related]

  • 18. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation.
    Almaidhan A, Cesario J, Landin Malt A, Zhao Y, Sharma N, Choi V, Jeong J.
    BMC Dev Biol; 2014 Jan 17; 14():3. PubMed ID: 24433583
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Molecular and Cellular Mechanisms of Palate Development.
    Li C, Lan Y, Jiang R.
    J Dent Res; 2017 Oct 17; 96(11):1184-1191. PubMed ID: 28745929
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.