These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Loss of glutathione, ascorbate recycling, and free radical scavenging in human erythrocytes exposed to filtered cigarette smoke. Maranzana A, Mehlhorn RJ. Arch Biochem Biophys; 1998 Feb 15; 350(2):169-82. PubMed ID: 9473290 [Abstract] [Full Text] [Related]
6. Erythrocytes reduce extracellular ascorbate free radicals using intracellular ascorbate as an electron donor. VanDuijn MM, Tijssen K, VanSteveninck J, Van Den Broek PJ, Van Der Zee J. J Biol Chem; 2000 Sep 08; 275(36):27720-5. PubMed ID: 10871632 [Abstract] [Full Text] [Related]
7. Mechanisms of ascorbic acid recycling in human erythrocytes. May JM, Qu Z, Morrow JD. Biochim Biophys Acta; 2001 Oct 03; 1528(2-3):159-66. PubMed ID: 11687303 [Abstract] [Full Text] [Related]
9. Extracellular reduction of the ascorbate free radical by human erythrocytes. May JM, Qu Zc, Cobb CE. Biochem Biophys Res Commun; 2000 Jan 07; 267(1):118-23. PubMed ID: 10623584 [Abstract] [Full Text] [Related]
10. Enzyme-dependent ascorbate recycling in human erythrocytes: role of thioredoxin reductase. Mendiratta S, Qu ZC, May JM. Free Radic Biol Med; 1998 Jul 15; 25(2):221-8. PubMed ID: 9667500 [Abstract] [Full Text] [Related]
11. Electron paramagnetic resonance studies on nitroxide radical 2,2,5,5-tetramethyl-4-piperidin-1-oxyl (TEMPO) redox reactions in human skin. Fuchs J, Groth N, Herrling T, Zimmer G. Free Radic Biol Med; 1997 Jul 15; 22(6):967-76. PubMed ID: 9034235 [Abstract] [Full Text] [Related]
12. Low Red Blood Cell Vitamin C Concentrations Induce Red Blood Cell Fragility: A Link to Diabetes Via Glucose, Glucose Transporters, and Dehydroascorbic Acid. Tu H, Li H, Wang Y, Niyyati M, Wang Y, Leshin J, Levine M. EBioMedicine; 2015 Nov 15; 2(11):1735-50. PubMed ID: 26870799 [Abstract] [Full Text] [Related]
14. The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Winkler BS, Orselli SM, Rex TS. Free Radic Biol Med; 1994 Oct 15; 17(4):333-49. PubMed ID: 8001837 [Abstract] [Full Text] [Related]
15. Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo. Tu H, Wang Y, Li H, Brinster LR, Levine M. EBioMedicine; 2017 Sep 15; 23():125-135. PubMed ID: 28851583 [Abstract] [Full Text] [Related]
16. l-Dehydroascorbic acid recycled by thiols efficiently scavenges non-thermal plasma-induced hydroxyl radicals. Okazaki Y, Tanaka H, Hori M, Toyokuni S. Arch Biochem Biophys; 2019 Jul 15; 669():87-95. PubMed ID: 31153952 [Abstract] [Full Text] [Related]
18. Accumulation of intracellular ascorbate from dehydroascorbic acid by astrocytes is decreased after oxidative stress and restored by propofol. Daskalopoulos R, Korcok J, Tao L, Wilson JX. Glia; 2002 Aug 15; 39(2):124-32. PubMed ID: 12112364 [Abstract] [Full Text] [Related]
19. Determination of the ascorbate free radical concentration in mixtures of ascorbate and dehydroascorbate. Van der Zee J, Van den Broek PJ. Free Radic Biol Med; 1998 Aug 15; 25(3):282-6. PubMed ID: 9680173 [Abstract] [Full Text] [Related]
20. Ascorbate recycling in human erythrocytes: role of GSH in reducing dehydroascorbate. May JM, Qu ZC, Whitesell RR, Cobb CE. Free Radic Biol Med; 1996 Aug 15; 20(4):543-51. PubMed ID: 8904295 [Abstract] [Full Text] [Related] Page: [Next] [New Search]