These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


373 related items for PubMed ID: 19936631

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B, Inoue H, Yano S, Tanapongpipat S, Ruanglek V, Champreda V, Pichyangkura R, Rengpipat S, Eurwilaichitr L.
    J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110
    [Abstract] [Full Text] [Related]

  • 4. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.
    Silva NL, Betancur GJ, Vasquez MP, Gomes Ede B, Pereira N.
    Appl Biochem Biotechnol; 2011 Apr; 163(7):928-36. PubMed ID: 20890779
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Bioconversion of brewer's spent grains to bioethanol.
    White JS, Yohannan BK, Walker GM.
    FEMS Yeast Res; 2008 Nov; 8(7):1175-84. PubMed ID: 18547331
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Enzymatic hydrolysis optimization to ethanol production by simultaneous saccharification and fermentation.
    Vásquez MP, da Silva JN, de Souza MB, Pereira N.
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):141-53. PubMed ID: 18478383
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF.
    Biotechnol Bioeng; 2006 Mar 05; 93(4):665-73. PubMed ID: 16372361
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis.
    Agbogbo FK, Coward-Kelly G.
    Biotechnol Lett; 2008 Sep 05; 30(9):1515-24. PubMed ID: 18431677
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose.
    Kordowska-Wiater M, Targoński Z.
    Acta Microbiol Pol; 2001 Sep 05; 50(3-4):291-9. PubMed ID: 11930997
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.