These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
248 related items for PubMed ID: 19937788
21. Optical coherence tomography for guidance in bifurcation lesion treatment. Di Mario C, Iakovou I, van der Giessen WJ, Foin N, Adrianssens T, Tyczynski P, Ghilencea L, Viceconte N, Lindsay AC. EuroIntervention; 2010 Dec; 6 Suppl J():J99-J106. PubMed ID: 21930500 [Abstract] [Full Text] [Related]
22. Interstudy reproducibility of the second generation, Fourier domain optical coherence tomography in patients with coronary artery disease and comparison with intravascular ultrasound: a study applying automated contour detection. Jamil Z, Tearney G, Bruining N, Sihan K, van Soest G, Ligthart J, van Domburg R, Bouma B, Regar E. Int J Cardiovasc Imaging; 2013 Jan; 29(1):39-51. PubMed ID: 22639296 [Abstract] [Full Text] [Related]
23. A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection. Tanimoto S, Rodriguez-Granillo G, Barlis P, de Winter S, Bruining N, Hamers R, Knappen M, Verheye S, Serruys PW, Regar E. Catheter Cardiovasc Interv; 2008 Aug 01; 72(2):228-35. PubMed ID: 18324698 [Abstract] [Full Text] [Related]
24. Optical coherence tomography: high resolution intravascular imaging to evaluate vascular healing after coronary stenting. Guagliumi G, Sirbu V. Catheter Cardiovasc Interv; 2008 Aug 01; 72(2):237-47. PubMed ID: 18655155 [Abstract] [Full Text] [Related]
25. Comparison of Fourier-domain and time-domain optical coherence tomography in the detection of band atrophy of the optic nerve. Costa-Cunha LV, Cunha LP, Malta RF, Monteiro ML. Am J Ophthalmol; 2009 Jan 01; 147(1):56-63.e2. PubMed ID: 18774548 [Abstract] [Full Text] [Related]
26. Frequency-domain intravascular optical coherence tomography of the femoropopliteal artery. Karnabatidis D, Katsanos K, Paraskevopoulos I, Diamantopoulos A, Spiliopoulos S, Siablis D. Cardiovasc Intervent Radiol; 2011 Dec 01; 34(6):1172-81. PubMed ID: 21191586 [Abstract] [Full Text] [Related]
27. Three-dimensional imaging of macular holes with high-speed optical coherence tomography. Hangai M, Ojima Y, Gotoh N, Inoue R, Yasuno Y, Makita S, Yamanari M, Yatagai T, Kita M, Yoshimura N. Ophthalmology; 2007 Apr 01; 114(4):763-73. PubMed ID: 17187861 [Abstract] [Full Text] [Related]
28. In vivo comparison of lumen dimensions measured by time domain-, and frequency domain-optical coherence tomography, and intravascular ultrasound. Kim SJ, Lee H, Kato K, Yonetsu T, Jang IK. Int J Cardiovasc Imaging; 2013 Jun 01; 29(5):967-75. PubMed ID: 23292151 [Abstract] [Full Text] [Related]
29. [Optical coherence tomography for coronary visualisation]. Radu MD, Jørgensen E, Saunamäki K. Ugeskr Laeger; 2009 Aug 24; 171(35):2466-7. PubMed ID: 19732532 [Abstract] [Full Text] [Related]
30. Spectral-domain Cirrus high-definition optical coherence tomography is better than time-domain Stratus optical coherence tomography for evaluation of macular pathologic features in uveitis. Gupta V, Gupta P, Singh R, Dogra MR, Gupta A. Am J Ophthalmol; 2008 Jun 24; 145(6):1018-1022. PubMed ID: 18343349 [Abstract] [Full Text] [Related]
31. Comparison of spectral-domain versus time-domain optical coherence tomography in management of age-related macular degeneration with ranibizumab. Sayanagi K, Sharma S, Yamamoto T, Kaiser PK. Ophthalmology; 2009 May 24; 116(5):947-55. PubMed ID: 19232732 [Abstract] [Full Text] [Related]
32. First-in-man evaluation of intravascular optical frequency domain imaging (OFDI) of Terumo: a comparison with intravascular ultrasound and quantitative coronary angiography. Okamura T, Onuma Y, Garcia-Garcia HM, van Geuns RJ, Wykrzykowska JJ, Schultz C, van der Giessen WJ, Ligthart J, Regar E, Serruys PW. EuroIntervention; 2011 Apr 24; 6(9):1037-45. PubMed ID: 21518674 [Abstract] [Full Text] [Related]
33. Retrospective image-based gating of intracoronary optical coherence tomography: implications for quantitative analysis. Sihan K, Botha C, Post F, de Winter S, Gonzalo N, Regar E, Serruys PW, Hamers R, Bruining N. EuroIntervention; 2011 Apr 24; 6(9):1098-103. PubMed ID: 21518683 [Abstract] [Full Text] [Related]
34. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units. Li J, Bloch P, Xu J, Sarunic MV, Shannon L. Appl Opt; 2011 May 01; 50(13):1832-8. PubMed ID: 21532660 [Abstract] [Full Text] [Related]
35. Optical coherence tomography: clinical applications and the evaluation of DES. Gonzalo N, Serruys PW, Regar E. Minerva Cardioangiol; 2008 Oct 01; 56(5):511-25. PubMed ID: 18813186 [Abstract] [Full Text] [Related]
36. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang IK, Akasaka T, Costa M, Guagliumi G, Grube E, Ozaki Y, Pinto F, Serruys PW, Expert's OCT Review Document. Eur Heart J; 2010 Feb 01; 31(4):401-15. PubMed ID: 19892716 [Abstract] [Full Text] [Related]
37. Preliminary observations using optical coherence tomography to assess neointimal coverage of a metal stent in a porcine model. Mills JS, N'diaye CS, Yow E, Urtz M, Povsic TJ, Greenfield JC, Phillips HR. Cardiovasc Revasc Med; 2009 Feb 01; 10(4):229-35. PubMed ID: 19815170 [Abstract] [Full Text] [Related]
38. Second-generation optical coherence tomography in clinical practice. High-speed data acquisition is highly reproducible in patients undergoing percutaneous coronary intervention. Gonzalo N, Tearney GJ, Serruys PW, van Soest G, Okamura T, García-García HM, Jan van Geuns R, van der Ent M, Ligthart J, Bouma BE, Regar E. Rev Esp Cardiol; 2010 Aug 01; 63(8):893-903. PubMed ID: 20738934 [Abstract] [Full Text] [Related]
39. Predictive value of plaque morphology assessed by frequency-domain optical coherence tomography for impaired microvascular perfusion after elective stent implantation: the intracoronary electrocardiogram study. Ikenaga H, Kurisu S, Nakao T, Kono S, Sumimoto Y, Watanabe N, Shimonaga T, Higaki T, Iwasaki T, Mitsuba N, Ishibashi K, Dohi Y, Fukuda Y, Kihara Y. Eur Heart J Cardiovasc Imaging; 2018 Mar 01; 19(3):310-318. PubMed ID: 28329036 [Abstract] [Full Text] [Related]
40. Anterior segment imaging: Fourier-domain optical coherence tomography versus time-domain optical coherence tomography. Wylegała E, Teper S, Nowińska AK, Milka M, Dobrowolski D. J Cataract Refract Surg; 2009 Aug 01; 35(8):1410-4. PubMed ID: 19631129 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]