These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


459 related items for PubMed ID: 19941847

  • 1. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS, Weideman EP, Hinman VF.
    Dev Biol; 2010 Apr 15; 340(2):200-8. PubMed ID: 19941847
    [Abstract] [Full Text] [Related]

  • 2. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA, Kitazawa C, Cheers MS, Leonard JD, Sharma T.
    Development; 2007 Sep 15; 134(17):3077-87. PubMed ID: 17670786
    [Abstract] [Full Text] [Related]

  • 3. Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins.
    Hinman VF, Nguyen A, Davidson EH.
    Dev Biol; 2007 Dec 15; 312(2):584-95. PubMed ID: 17956756
    [Abstract] [Full Text] [Related]

  • 4. Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis.
    Ettensohn CA.
    Development; 2009 Jan 15; 136(1):11-21. PubMed ID: 19060330
    [Abstract] [Full Text] [Related]

  • 5. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.
    Hinman VF, Nguyen AT, Cameron RA, Davidson EH.
    Proc Natl Acad Sci U S A; 2003 Nov 11; 100(23):13356-61. PubMed ID: 14595011
    [Abstract] [Full Text] [Related]

  • 6. Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms.
    Erkenbrack EM, Ako-Asare K, Miller E, Tekelenburg S, Thompson JR, Romano L.
    Dev Genes Evol; 2016 Jan 11; 226(1):37-45. PubMed ID: 26781941
    [Abstract] [Full Text] [Related]

  • 7. Activation of the skeletogenic gene regulatory network in the early sea urchin embryo.
    Sharma T, Ettensohn CA.
    Development; 2010 Apr 11; 137(7):1149-57. PubMed ID: 20181745
    [Abstract] [Full Text] [Related]

  • 8. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons.
    Koga H, Matsubara M, Fujitani H, Miyamoto N, Komatsu M, Kiyomoto M, Akasaka K, Wada H.
    Dev Genes Evol; 2010 Sep 11; 220(3-4):107-15. PubMed ID: 20680330
    [Abstract] [Full Text] [Related]

  • 9. Heterochronic activation of VEGF signaling and the evolution of the skeleton in echinoderm pluteus larvae.
    Morino Y, Koga H, Tachibana K, Shoguchi E, Kiyomoto M, Wada H.
    Evol Dev; 2012 Sep 11; 14(5):428-36. PubMed ID: 22947316
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins.
    Erkenbrack EM.
    Proc Natl Acad Sci U S A; 2016 Nov 15; 113(46):E7202-E7211. PubMed ID: 27810959
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Systematic comparison of sea urchin and sea star developmental gene regulatory networks explains how novelty is incorporated in early development.
    Cary GA, McCauley BS, Zueva O, Pattinato J, Longabaugh W, Hinman VF.
    Nat Commun; 2020 Dec 04; 11(1):6235. PubMed ID: 33277483
    [Abstract] [Full Text] [Related]

  • 15. An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network.
    Yuh CH, Dorman ER, Howard ML, Davidson EH.
    Dev Biol; 2004 May 15; 269(2):536-51. PubMed ID: 15110718
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E, Saudemont A, Duboc V, Besnardeau L, McClay D, Lepage T.
    Development; 2008 Jan 15; 135(2):353-65. PubMed ID: 18077587
    [Abstract] [Full Text] [Related]

  • 18. Expression of AmHNF6, a sea star orthologue of a transcription factor with multiple distinct roles in sea urchin development.
    Otim O, Hinman VF, Davidson EH.
    Gene Expr Patterns; 2005 Feb 15; 5(3):381-6. PubMed ID: 15661644
    [Abstract] [Full Text] [Related]

  • 19. The dynamic gene expression patterns of transcription factors constituting the sea urchin aboral ectoderm gene regulatory network.
    Chen JH, Luo YJ, Su YH.
    Dev Dyn; 2011 Jan 15; 240(1):250-60. PubMed ID: 21181943
    [Abstract] [Full Text] [Related]

  • 20. Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network.
    Livi CB, Davidson EH.
    Dev Biol; 2006 May 15; 293(2):513-25. PubMed ID: 16581059
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.