These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 19941946
21. Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation. Greene NT, Mattingly JK, Jenkins HA, Tollin DJ, Easter JR, Cass SP. Otol Neurotol; 2015 Sep; 36(9):1554-61. PubMed ID: 26333018 [Abstract] [Full Text] [Related]
22. Reinforced active middle ear implant fixation in incus vibroplasty. Mlynski R, Dalhoff E, Heyd A, Wildenstein D, Hagen R, Gummer AW, Schraven SP. Ear Hear; 2015 Jan; 36(1):72-81. PubMed ID: 25099400 [Abstract] [Full Text] [Related]
23. A three-dimensional finite element model of round window membrane vibration before and after stapedotomy surgery. Kwacz M, Marek P, Borkowski P, Mrówka M. Biomech Model Mechanobiol; 2013 Nov; 12(6):1243-61. PubMed ID: 23462937 [Abstract] [Full Text] [Related]
24. Controlled round-window stimulation in human temporal bones yielding reproducible and functionally relevant stapedial responses. Schraven SP, Hirt B, Gummer AW, Zenner HP, Dalhoff E. Hear Res; 2011 Dec; 282(1-2):272-82. PubMed ID: 21798325 [Abstract] [Full Text] [Related]
25. Benefits of active middle ear implants in mixed hearing loss: Stapes versus round window. Lee JM, Jung J, Moon IS, Kim SH, Choi JY. Laryngoscope; 2017 Jun; 127(6):1435-1441. PubMed ID: 27560038 [Abstract] [Full Text] [Related]
26. Objective assessment of stapedotomy surgery from round window motion measurement. Sim JH, Chatzimichalis M, Röösli C, Laske RD, Huber AM. Ear Hear; 2012 Jun; 33(5):e24-31. PubMed ID: 22699658 [Abstract] [Full Text] [Related]
27. A tri-coil bellows-type round window transducer with improved frequency characteristics for middle-ear implants. Shin DH, Seong KW, Puria S, Lee KY, Cho JH. Hear Res; 2016 Nov; 341():144-154. PubMed ID: 27594098 [Abstract] [Full Text] [Related]
28. Effects of Skin Thickness on Cochlear Input Signal Using Transcutaneous Bone Conduction Implants. Mattingly JK, Greene NT, Jenkins HA, Tollin DJ, Easter JR, Cass SP. Otol Neurotol; 2015 Sep; 36(8):1403-11. PubMed ID: 26164446 [Abstract] [Full Text] [Related]
31. A novel mechanism of cochlear excitation during simultaneous stimulation and pressure relief through the round window. Weddell TD, Yarin YM, Drexl M, Russell IJ, Elliott SJ, Lukashkin AN. J R Soc Interface; 2014 Apr 06; 11(93):20131120. PubMed ID: 24501274 [Abstract] [Full Text] [Related]
32. The mechanism of direct stimulation of the cochlea by vibrating the round window. Perez R, Adelman C, Chordekar S, de Jong MA, Sohmer H. J Basic Clin Physiol Pharmacol; 2014 Sep 06; 25(3):273-6. PubMed ID: 25046313 [Abstract] [Full Text] [Related]
34. Round window membrane implantation with an active middle ear implant: a study of the effects on the performance of round window exposure and transducer tip diameter in human cadaveric temporal bones. Tringali S, Koka K, Deveze A, Holland NJ, Jenkins HA, Tollin DJ. Audiol Neurootol; 2010 Sep 06; 15(5):291-302. PubMed ID: 20150727 [Abstract] [Full Text] [Related]
35. Sound pressures in the basal turn of the cat cochlea. Nedzelnitsky V. J Acoust Soc Am; 1980 Dec 06; 68(6):1676-89. PubMed ID: 7462467 [Abstract] [Full Text] [Related]
37. The floating mass transducer on the round window versus attachment to an ossicular replacement prosthesis. Shimizu Y, Puria S, Goode RL. Otol Neurotol; 2011 Jan 06; 32(1):98-103. PubMed ID: 20930654 [Abstract] [Full Text] [Related]
38. A Preliminary Investigation of the Air-Bone Gap: Changes in Intracochlear Sound Pressure With Air- and Bone-conducted Stimuli After Cochlear Implantation. Banakis Hartl RM, Mattingly JK, Greene NT, Jenkins HA, Cass SP, Tollin DJ. Otol Neurotol; 2016 Oct 06; 37(9):1291-9. PubMed ID: 27579835 [Abstract] [Full Text] [Related]