These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 19943668

  • 1. A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values.
    Pham AL, Lee C, Doyle FM, Sedlak DL.
    Environ Sci Technol; 2009 Dec 01; 43(23):8930-5. PubMed ID: 19943668
    [Abstract] [Full Text] [Related]

  • 2. Inhibitory effect of dissolved silica on H₂O₂ decomposition by iron(III) and manganese(IV) oxides: implications for H₂O₂-based in situ chemical oxidation.
    Pham AL, Doyle FM, Sedlak DL.
    Environ Sci Technol; 2012 Jan 17; 46(2):1055-62. PubMed ID: 22129132
    [Abstract] [Full Text] [Related]

  • 3. Visible-light photo-Fenton oxidation of phenol with rGO-α-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: Performance and optimization of the catalyst.
    Wang Y, Liang M, Fang J, Fu J, Chen X.
    Chemosphere; 2017 Sep 17; 182():468-476. PubMed ID: 28521161
    [Abstract] [Full Text] [Related]

  • 4. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K, Kone T, Ruby C.
    Environ Sci Pollut Res Int; 2010 Jan 17; 17(1):124-34. PubMed ID: 19350299
    [Abstract] [Full Text] [Related]

  • 5. Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials.
    Pham AL, Doyle FM, Sedlak DL.
    Water Res; 2012 Dec 01; 46(19):6454-62. PubMed ID: 23047055
    [Abstract] [Full Text] [Related]

  • 6. Decolourization of Methyl Orange using Fenton-like mesoporous Fe(2)O(3)-SiO(2) composite.
    Panda N, Sahoo H, Mohapatra S.
    J Hazard Mater; 2011 Jan 15; 185(1):359-65. PubMed ID: 20934248
    [Abstract] [Full Text] [Related]

  • 7. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.
    Xue X, Hanna K, Deng N.
    J Hazard Mater; 2009 Jul 15; 166(1):407-14. PubMed ID: 19167810
    [Abstract] [Full Text] [Related]

  • 8. Intensified-Fenton process for the treatment of phenol aqueous solutions.
    Pariente MI, Molina R, Melero JA, Botas JÁ, Martínez F.
    Water Sci Technol; 2015 Jul 15; 71(3):359-65. PubMed ID: 25714634
    [Abstract] [Full Text] [Related]

  • 9. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.
    Hug SJ, Leupin O.
    Environ Sci Technol; 2003 Jun 15; 37(12):2734-42. PubMed ID: 12854713
    [Abstract] [Full Text] [Related]

  • 10. Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol.
    Calleja G, Melero JA, Martínez F, Molina R.
    Water Res; 2005 May 15; 39(9):1741-50. PubMed ID: 15899272
    [Abstract] [Full Text] [Related]

  • 11. Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts.
    Rey A, Bahamonde A, Casas JA, Rodríguez JJ.
    Water Sci Technol; 2010 May 15; 61(11):2769-78. PubMed ID: 20489249
    [Abstract] [Full Text] [Related]

  • 12. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(II)/Fe(III) ratio on catalytic performance.
    Rusevova K, Kopinke FD, Georgi A.
    J Hazard Mater; 2012 Nov 30; 241-242():433-40. PubMed ID: 23098995
    [Abstract] [Full Text] [Related]

  • 13. Effect of alumina on photocatalytic activity of iron oxides for bisphenol A degradation.
    Li FB, Li XZ, Liu CS, Liu TX.
    J Hazard Mater; 2007 Oct 01; 149(1):199-207. PubMed ID: 17475402
    [Abstract] [Full Text] [Related]

  • 14. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.
    Li Y, Machala L, Yan W.
    Environ Sci Technol; 2016 Feb 02; 50(3):1190-9. PubMed ID: 26713453
    [Abstract] [Full Text] [Related]

  • 15. Acidic amorphous silica prepared from iron oxide of bacterial origin.
    Hashimoto H, Itadani A, Kudoh T, Kuroda Y, Seno M, Kusano Y, Ikeda Y, Nakanishi M, Fujii T, Takada J.
    ACS Appl Mater Interfaces; 2013 Feb 02; 5(3):518-23. PubMed ID: 23331569
    [Abstract] [Full Text] [Related]

  • 16. Heterogeneous photodegradation of bisphenol A with iron oxides and oxalate in aqueous solution.
    Li FB, Li XZ, Li XM, Liu TX, Dong J.
    J Colloid Interface Sci; 2007 Jul 15; 311(2):481-90. PubMed ID: 17451730
    [Abstract] [Full Text] [Related]

  • 17. Heterogeneous catalytic oxidation of hypophosphite by H2O2: pH effect.
    Hung CC, Huang YH, Chen CY.
    Water Sci Technol; 2007 Jul 15; 55(12):89-93. PubMed ID: 17674832
    [Abstract] [Full Text] [Related]

  • 18. Factors influencing the preparation of supported iron oxide in fluidized-bed crystallization.
    Chou S, Liao CC, Perng SH, Chang SH.
    Chemosphere; 2004 Feb 15; 54(7):859-66. PubMed ID: 14637343
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Continuous-Flow Synthesis of Supported Magnetic Iron Oxide Nanoparticles for Efficient Isoeugenol Conversion into Vanillin.
    Marquez-Medina MD, Prinsen P, Li H, Shih K, Romero AA, Luque R.
    ChemSusChem; 2018 Jan 23; 11(2):389-396. PubMed ID: 29161467
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.