These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 19945521

  • 1. Middle-ear pressure gain and cochlear partition differential pressure in chinchilla.
    Ravicz ME, Slama MC, Rosowski JJ.
    Hear Res; 2010 May; 263(1-2):16-25. PubMed ID: 19945521
    [Abstract] [Full Text] [Related]

  • 2. Differential intracochlear sound pressure measurements in normal human temporal bones.
    Nakajima HH, Dong W, Olson ES, Merchant SN, Ravicz ME, Rosowski JJ.
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):23-36. PubMed ID: 19067078
    [Abstract] [Full Text] [Related]

  • 3. Inner-ear sound pressures near the base of the cochlea in chinchilla: further investigation.
    Ravicz ME, Rosowski JJ.
    J Acoust Soc Am; 2013 Apr; 133(4):2208-23. PubMed ID: 23556590
    [Abstract] [Full Text] [Related]

  • 4. Middle ear function and cochlear input impedance in chinchilla.
    Slama MC, Ravicz ME, Rosowski JJ.
    J Acoust Soc Am; 2010 Mar; 127(3):1397-410. PubMed ID: 20329840
    [Abstract] [Full Text] [Related]

  • 5. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V.
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [Abstract] [Full Text] [Related]

  • 6. Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla.
    Ravicz ME, Rosowski JJ.
    J Acoust Soc Am; 2013 Oct; 134(4):2852-65. PubMed ID: 24116422
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea.
    Stieger C, Rosowski JJ, Nakajima HH.
    Hear Res; 2013 Jul; 301():105-14. PubMed ID: 23159918
    [Abstract] [Full Text] [Related]

  • 13. A lumped-element model of the chinchilla middle ear.
    Bowers P, Rosowski JJ.
    J Acoust Soc Am; 2019 Apr; 145(4):1975. PubMed ID: 31046320
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Evidence of inner ear contribution in bone conduction in chinchilla.
    Chhan D, Röösli C, McKinnon ML, Rosowski JJ.
    Hear Res; 2013 Jul; 301():66-71. PubMed ID: 23211609
    [Abstract] [Full Text] [Related]

  • 17. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones.
    Frear DL, Guan X, Stieger C, Rosowski JJ, Nakajima HH.
    Hear Res; 2018 Sep; 367():17-31. PubMed ID: 30015103
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation.
    Greene NT, Mattingly JK, Jenkins HA, Tollin DJ, Easter JR, Cass SP.
    Otol Neurotol; 2015 Sep; 36(9):1554-61. PubMed ID: 26333018
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.