These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


680 related items for PubMed ID: 19947647

  • 1. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing.
    Otte MA, Sepúlveda B, Ni W, Juste JP, Liz-Marzán LM, Lechuga LM.
    ACS Nano; 2010 Jan 26; 4(1):349-57. PubMed ID: 19947647
    [Abstract] [Full Text] [Related]

  • 2. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS, El-Sayed MA.
    J Phys Chem B; 2006 Oct 05; 110(39):19220-5. PubMed ID: 17004772
    [Abstract] [Full Text] [Related]

  • 3. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods.
    Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A, Scully PT, Nehl CL, Hafner JH.
    ACS Nano; 2008 Apr 05; 2(4):687-92. PubMed ID: 19206599
    [Abstract] [Full Text] [Related]

  • 4. Plasmonic detection of a model analyte in serum by a gold nanorod sensor.
    Marinakos SM, Chen S, Chilkoti A.
    Anal Chem; 2007 Jul 15; 79(14):5278-83. PubMed ID: 17567106
    [Abstract] [Full Text] [Related]

  • 5. Sensing capability of the localized surface plasmon resonance of gold nanorods.
    Chen CD, Cheng SF, Chau LK, Wang CR.
    Biosens Bioelectron; 2007 Jan 15; 22(6):926-32. PubMed ID: 16697633
    [Abstract] [Full Text] [Related]

  • 6. Universal scaling of the figure of merit of plasmonic sensors.
    Offermans P, Schaafsma MC, Rodriguez SR, Zhang Y, Crego-Calama M, Brongersma SH, Gómez Rivas J.
    ACS Nano; 2011 Jun 28; 5(6):5151-7. PubMed ID: 21574624
    [Abstract] [Full Text] [Related]

  • 7. Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods.
    Huang H, Tang C, Zeng Y, Yu X, Liao B, Xia X, Yi P, Chu PK.
    Colloids Surf B Biointerfaces; 2009 Jun 01; 71(1):96-101. PubMed ID: 19211228
    [Abstract] [Full Text] [Related]

  • 8. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer.
    Yonzon CR, Jeoung E, Zou S, Schatz GC, Mrksich M, Van Duyne RP.
    J Am Chem Soc; 2004 Oct 06; 126(39):12669-76. PubMed ID: 15453801
    [Abstract] [Full Text] [Related]

  • 9. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size.
    Nath N, Chilkoti A.
    Anal Chem; 2004 Sep 15; 76(18):5370-8. PubMed ID: 15362894
    [Abstract] [Full Text] [Related]

  • 10. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM, Lazarides AA.
    J Phys Chem B; 2005 Nov 24; 109(46):21556-65. PubMed ID: 16853799
    [Abstract] [Full Text] [Related]

  • 11. Gold nanoring trimers: a versatile structure for infrared sensing.
    Teo SL, Lin VK, Marty R, Large N, Llado EA, Arbouet A, Girard C, Aizpurua J, Tripathy S, Mlayah A.
    Opt Express; 2010 Oct 11; 18(21):22271-82. PubMed ID: 20941128
    [Abstract] [Full Text] [Related]

  • 12. Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy.
    Qi ZM, Xia S, Zou H.
    Nanotechnology; 2009 Jun 24; 20(25):255702. PubMed ID: 19491460
    [Abstract] [Full Text] [Related]

  • 13. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA.
    Acc Chem Res; 2008 Dec 24; 41(12):1578-86. PubMed ID: 18447366
    [Abstract] [Full Text] [Related]

  • 14. A vapor sensor array using multiple localized surface plasmon resonance bands in a single UV-vis spectrum.
    Chen KJ, Lu CJ.
    Talanta; 2010 Jun 15; 81(4-5):1670-5. PubMed ID: 20441956
    [Abstract] [Full Text] [Related]

  • 15. Nanostructure shape effects on response of plasmonic aptamer sensors.
    Balamurugan S, Mayer KM, Lee S, Soper SA, Hafner JH, Spivak DA.
    J Mol Recognit; 2013 Sep 15; 26(9):402-7. PubMed ID: 23836467
    [Abstract] [Full Text] [Related]

  • 16. High-sensitivity biosensors fabricated by tailoring the localized surface plasmon resonance property of core-shell gold nanorods.
    Huang H, Huang S, Yuan S, Qu C, Chen Y, Xu Z, Liao B, Zeng Y, Chu PK.
    Anal Chim Acta; 2011 Jan 10; 683(2):242-7. PubMed ID: 21167977
    [Abstract] [Full Text] [Related]

  • 17. Use of a near-field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: a study by the finite difference time domain method.
    Hwang BS, Kwon MH, Kim J.
    Microsc Res Tech; 2004 Aug 10; 64(5-6):453-8. PubMed ID: 15549697
    [Abstract] [Full Text] [Related]

  • 18. Versatile solution phase triangular silver nanoplates for highly sensitive plasmon resonance sensing.
    Charles DE, Aherne D, Gara M, Ledwith DM, Gun'ko YK, Kelly JM, Blau WJ, Brennan-Fournet ME.
    ACS Nano; 2010 Jan 26; 4(1):55-64. PubMed ID: 20030362
    [Abstract] [Full Text] [Related]

  • 19. Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions.
    Halté V, Benabbas A, Bigot JY.
    Opt Express; 2008 Jul 21; 16(15):11611-7. PubMed ID: 18648482
    [Abstract] [Full Text] [Related]

  • 20. Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods.
    Law WC, Yong KT, Baev A, Hu R, Prasad PN.
    Opt Express; 2009 Oct 12; 17(21):19041-6. PubMed ID: 20372639
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 34.