These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
193 related items for PubMed ID: 19951700
1. Protostadienol synthase from Aspergillus fumigatus: functional conversion into lanosterol synthase. Kimura M, Kushiro T, Shibuya M, Ebizuka Y, Abe I. Biochem Biophys Res Commun; 2010 Jan 01; 391(1):899-902. PubMed ID: 19951700 [Abstract] [Full Text] [Related]
4. Identification of an Oxidosqualene Cyclase Gene Involved in Steroidal Triterpenoid Biosynthesis in Cordyceps farinosa. An GH, Han JG, Park HS, Sung GH, Kim OT. Genes (Basel); 2021 May 31; 12(6):. PubMed ID: 34072640 [Abstract] [Full Text] [Related]
5. Deletion of the Gly600 residue of Alicyclobacillus acidocaldarius squalene cyclase alters the substrate specificity into that of the eukaryotic-type cyclase specific to (3S)-2,3-oxidosqualene. Hoshino T, Shimizu K, Sato T. Angew Chem Int Ed Engl; 2004 Dec 10; 43(48):6700-3. PubMed ID: 15593147 [No Abstract] [Full Text] [Related]
6. Protein engineering of Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase into parkeol synthase. Liu YT, Hu TC, Chang CH, Shie WS, Wu TK. Org Lett; 2012 Oct 19; 14(20):5222-5. PubMed ID: 23043506 [Abstract] [Full Text] [Related]
12. Molecular cloning, expression, and site-directed mutations of oxidosqualene cyclase from Cephalosporium caerulens. Abe I, Naito K, Takagi Y, Noguchi H. Biochim Biophys Acta; 2001 Dec 03; 1522(2):67-73. PubMed ID: 11750056 [Abstract] [Full Text] [Related]
13. Site-directed mutagenesis of squalene-hopene cyclase: altered substrate specificity and product distribution. Dang T, Prestwich GD. Chem Biol; 2000 Aug 03; 7(8):643-9. PubMed ID: 11048954 [Abstract] [Full Text] [Related]
14. A putative precursor of isomalabaricane triterpenoids from lanosterol synthase mutants. Lodeiro S, Wilson WK, Shan H, Matsuda SP. Org Lett; 2006 Feb 02; 8(3):439-42. PubMed ID: 16435854 [Abstract] [Full Text] [Related]
15. Effect of cation-π interactions and steric bulk on the catalytic action of oxidosqualene cyclase: a case study of Phe728 of β-amyrin synthase from Euphorbia tirucalli L. Ito R, Hashimoto I, Masukawa Y, Hoshino T. Chemistry; 2013 Dec 09; 19(50):17150-8. PubMed ID: 24203491 [Abstract] [Full Text] [Related]
16. Oryza sativa Parkeol Cyclase: Changes in the Substrate-Folding Conformation and the Deprotonation Sites on Mutation at Tyr257: Importance of the Hydroxy Group and Steric Bulk. Suzuki A, Aikawa Y, Ito R, Hoshino T. Chembiochem; 2019 Nov 18; 20(22):2862-2875. PubMed ID: 31180162 [Abstract] [Full Text] [Related]
17. Steric bulk at cycloartenol synthase position 481 influences cyclization and deprotonation. Matsuda SP, Darr LB, Hart EA, Herrera JB, McCann KE, Meyer MM, Pang J, Schepmann HG. Org Lett; 2000 Jul 27; 2(15):2261-3. PubMed ID: 10930258 [Abstract] [Full Text] [Related]
18. Directed evolution experiments reveal mutations at cycloartenol synthase residue His477 that dramatically alter catalysis. Segura MJ, Lodeiro S, Meyer MM, Patel AJ, Matsuda SP. Org Lett; 2002 Dec 12; 4(25):4459-62. PubMed ID: 12465912 [Abstract] [Full Text] [Related]
19. Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase: a chemistry-biology interdisciplinary study of the protein's structure-function-reaction mechanism relationships. Wu TK, Chang CH, Liu YT, Wang TT. Chem Rec; 2008 Dec 12; 8(5):302-25. PubMed ID: 18956480 [Abstract] [Full Text] [Related]
20. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Thoma R, Schulz-Gasch T, D'Arcy B, Benz J, Aebi J, Dehmlow H, Hennig M, Stihle M, Ruf A. Nature; 2004 Nov 04; 432(7013):118-22. PubMed ID: 15525992 [Abstract] [Full Text] [Related] Page: [Next] [New Search]