These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Hyperexcitability in synaptic and firing activities of spinal motoneurons in an adult mouse model of amyotrophic lateral sclerosis. Jiang MC, Adimula A, Birch D, Heckman CJ. Neuroscience; 2017 Oct 24; 362():33-46. PubMed ID: 28844763 [Abstract] [Full Text] [Related]
3. Glycine receptor channels in spinal motoneurons are abnormal in a transgenic mouse model of amyotrophic lateral sclerosis. Chang Q, Martin LJ. J Neurosci; 2011 Feb 23; 31(8):2815-27. PubMed ID: 21414903 [Abstract] [Full Text] [Related]
7. Hyperexcitability of cultured spinal motoneurons from presymptomatic ALS mice. Kuo JJ, Schonewille M, Siddique T, Schults AN, Fu R, Bär PR, Anelli R, Heckman CJ, Kroese AB. J Neurophysiol; 2004 Jan 23; 91(1):571-5. PubMed ID: 14523070 [Abstract] [Full Text] [Related]
8. Early excitability changes in lumbar motoneurons of transgenic SOD1G85R and SOD1G(93A-Low) mice. Pambo-Pambo A, Durand J, Gueritaud JP. J Neurophysiol; 2009 Dec 23; 102(6):3627-42. PubMed ID: 19828728 [Abstract] [Full Text] [Related]
9. Antidromic discharges of dorsal root afferents and inhibition of the lumbar monosynaptic reflex in the neonatal rat. Vinay L, Clarac F. Neuroscience; 1999 Apr 23; 90(1):165-76. PubMed ID: 10188943 [Abstract] [Full Text] [Related]
11. Knocking down metabotropic glutamate receptor 1 improves survival and disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Milanese M, Giribaldi F, Melone M, Bonifacino T, Musante I, Carminati E, Rossi PI, Vergani L, Voci A, Conti F, Puliti A, Bonanno G. Neurobiol Dis; 2014 Apr 23; 64():48-59. PubMed ID: 24361555 [Abstract] [Full Text] [Related]
12. The vulnerability of spinal motoneurons and soma size plasticity in a mouse model of amyotrophic lateral sclerosis. Dukkipati SS, Garrett TL, Elbasiouny SM. J Physiol; 2018 May 01; 596(9):1723-1745. PubMed ID: 29502344 [Abstract] [Full Text] [Related]
13. Downregulation of the potassium chloride cotransporter KCC2 in vulnerable motoneurons in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Fuchs A, Ringer C, Bilkei-Gorzo A, Weihe E, Roeper J, Schütz B. J Neuropathol Exp Neurol; 2010 Oct 01; 69(10):1057-70. PubMed ID: 20838240 [Abstract] [Full Text] [Related]
14. Spinal inhibitory interneuron pathology follows motor neuron degeneration independent of glial mutant superoxide dismutase 1 expression in SOD1-ALS mice. Hossaini M, Cardona Cano S, van Dis V, Haasdijk ED, Hoogenraad CC, Holstege JC, Jaarsma D. J Neuropathol Exp Neurol; 2011 Aug 01; 70(8):662-77. PubMed ID: 21760539 [Abstract] [Full Text] [Related]
16. Fatigability of spinal reflex transmission in a mouse model (SOD1(G93A) ) of amyotrophic lateral sclerosis. Schomburg ED, Steffens H, Zschüntzsch J, Dibaj P, Keller BU. Muscle Nerve; 2011 Feb 01; 43(2):230-6. PubMed ID: 21254088 [Abstract] [Full Text] [Related]
17. Altered development in GABA co-release shapes glycinergic synaptic currents in cultured spinal slices of the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Medelin M, Rancic V, Cellot G, Laishram J, Veeraraghavan P, Rossi C, Muzio L, Sivilotti L, Ballerini L. J Physiol; 2016 Jul 01; 594(13):3827-40. PubMed ID: 27098371 [Abstract] [Full Text] [Related]
18. Altered sensorimotor development in a transgenic mouse model of amyotrophic lateral sclerosis. Amendola J, Verrier B, Roubertoux P, Durand J. Eur J Neurosci; 2004 Nov 01; 20(10):2822-6. PubMed ID: 15548226 [Abstract] [Full Text] [Related]
19. GAB(A) receptors present higher affinity and modified subunit composition in spinal motor neurons from a genetic model of amyotrophic lateral sclerosis. Carunchio I, Mollinari C, Pieri M, Merlo D, Zona C. Eur J Neurosci; 2008 Oct 01; 28(7):1275-85. PubMed ID: 18973555 [Abstract] [Full Text] [Related]