These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer. van Hees VT, Renström F, Wright A, Gradmark A, Catt M, Chen KY, Löf M, Bluck L, Pomeroy J, Wareham NJ, Ekelund U, Brage S, Franks PW. PLoS One; 2011; 6(7):e22922. PubMed ID: 21829556 [Abstract] [Full Text] [Related]
8. Predicting energy expenditure of physical activity using hip- and wrist-worn accelerometers. Chen KY, Acra SA, Majchrzak K, Donahue CL, Baker L, Clemens L, Sun M, Buchowski MS. Diabetes Technol Ther; 2003; 5(6):1023-33. PubMed ID: 14709206 [Abstract] [Full Text] [Related]
9. Prediction of energy expenditure and physical activity in preschoolers. Butte NF, Wong WW, Lee JS, Adolph AL, Puyau MR, Zakeri IF. Med Sci Sports Exerc; 2014 Jun; 46(6):1216-26. PubMed ID: 24195866 [Abstract] [Full Text] [Related]
11. Comparison of Indirect Calorimetry- and Accelerometry-Based Energy Expenditure During Children's Discrete Skill Performance. Sacko R, McIver K, Brazendale K, Pfeifer C, Brian A, Nesbitt D, Stodden DF. Res Q Exerc Sport; 2019 Dec; 90(4):629-640. PubMed ID: 31441713 [Abstract] [Full Text] [Related]
12. Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers. Rothney MP, Schaefer EV, Neumann MM, Choi L, Chen KY. Obesity (Silver Spring); 2008 Aug; 16(8):1946-52. PubMed ID: 18535553 [Abstract] [Full Text] [Related]
13. Estimation of Physical Activity Energy Expenditure during Free-Living from Wrist Accelerometry in UK Adults. White T, Westgate K, Wareham NJ, Brage S. PLoS One; 2016 Aug; 11(12):e0167472. PubMed ID: 27936024 [Abstract] [Full Text] [Related]
14. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents. Zakeri IF, Adolph AL, Puyau MR, Vohra FA, Butte NF. J Appl Physiol (1985); 2010 Jan; 108(1):128-36. PubMed ID: 19892930 [Abstract] [Full Text] [Related]
15. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry. Kumahara H, Schutz Y, Ayabe M, Yoshioka M, Yoshitake Y, Shindo M, Ishii K, Tanaka H. Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909 [Abstract] [Full Text] [Related]
16. Estimating physical activity in youth using a wrist accelerometer. Crouter SE, Flynn JI, Bassett DR. Med Sci Sports Exerc; 2015 May; 47(5):944-51. PubMed ID: 25207928 [Abstract] [Full Text] [Related]
17. A moderate dose of caffeine ingestion does not change energy expenditure but decreases sleep time in physically active males: a double-blind randomized controlled trial. Júdice PB, Magalhães JP, Santos DA, Matias CN, Carita AI, Armada-Da-Silva PA, Sardinha LB, Silva AM. Appl Physiol Nutr Metab; 2013 Jan; 38(1):49-56. PubMed ID: 23368828 [Abstract] [Full Text] [Related]
18. Validation of Oura ring energy expenditure and steps in laboratory and free-living. Kristiansson E, Fridolfsson J, Arvidsson D, Holmäng A, Börjesson M, Andersson-Hall U. BMC Med Res Methodol; 2023 Feb 24; 23(1):50. PubMed ID: 36829120 [Abstract] [Full Text] [Related]
19. Deciphering the constrained total energy expenditure model in humans by associating accelerometer-measured physical activity from wrist and hip. Fernández-Verdejo R, Alcantara JMA, Galgani JE, Acosta FM, Migueles JH, Amaro-Gahete FJ, Labayen I, Ortega FB, Ruiz JR. Sci Rep; 2021 Jun 10; 11(1):12302. PubMed ID: 34112912 [Abstract] [Full Text] [Related]
20. Activity diary method for predicting energy expenditure as evaluated by a whole-body indirect human calorimeter. Yamamura C, Tanaka S, Futami J, Oka J, Ishikawa-Takata K, Kashiwazaki H. J Nutr Sci Vitaminol (Tokyo); 2003 Aug 10; 49(4):262-9. PubMed ID: 14598913 [Abstract] [Full Text] [Related] Page: [Next] [New Search]