These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


104 related items for PubMed ID: 19962369

  • 1. Crossing dendrites of the hypoglossal motoneurons: possible morphological substrate of coordinated and synchronized tongue movements of the frog, Rana esculenta.
    Bácskai T, Veress G, Halasi G, Matesz C.
    Brain Res; 2010 Feb 08; 1313():89-96. PubMed ID: 19962369
    [Abstract] [Full Text] [Related]

  • 2. Brainstem circuits underlying the prey-catching behavior of the frog.
    Matesz K, Kecskes S, Bácskai T, Rácz É, Birinyi A.
    Brain Behav Evol; 2014 Feb 08; 83(2):104-11. PubMed ID: 24776991
    [Abstract] [Full Text] [Related]

  • 3. Axonal projections and synapses from the supratrigeminal region to hypoglossal motoneurons in the rat.
    Luo P, Dessem D, Zhang J.
    Brain Res; 2001 Feb 02; 890(2):314-29. PubMed ID: 11164798
    [Abstract] [Full Text] [Related]

  • 4. Dendrodendritic and dendrosomatic contacts between oculomotor and trochlear motoneurons of the frog, Rana esculenta.
    Bacskai T, Veress G, Halasi G, Deak A, Racz E, Szekely G, Matesz C.
    Brain Res Bull; 2008 Mar 18; 75(2-4):419-23. PubMed ID: 18331909
    [Abstract] [Full Text] [Related]

  • 5. Organization of last-order premotor interneurons related to the protraction of tongue in the frog, Rana esculenta.
    Rácz E, Bácskai T, Szabo G, Székely G, Matesz C.
    Brain Res; 2008 Jan 02; 1187():111-5. PubMed ID: 18036575
    [Abstract] [Full Text] [Related]

  • 6. Neural circuits underlying tongue movements for the prey-catching behavior in frog: distribution of primary afferent terminals on motoneurons supplying the tongue.
    Kecskes S, Matesz C, Gaál B, Birinyi A.
    Brain Struct Funct; 2016 Apr 02; 221(3):1533-53. PubMed ID: 25575900
    [Abstract] [Full Text] [Related]

  • 7. Dendritic architecture of hypoglossal motoneurons projecting to extrinsic tongue musculature in the rat.
    Altschuler SM, Bao X, Miselis RR.
    J Comp Neurol; 1994 Apr 22; 342(4):538-50. PubMed ID: 8040364
    [Abstract] [Full Text] [Related]

  • 8. Possible neural network mediating jaw opening during prey-catching behavior of the frog.
    Kovalecz G, Kecskes S, Birinyi A, Matesz C.
    Brain Res Bull; 2015 Oct 22; 119(Pt A):19-24. PubMed ID: 26444079
    [Abstract] [Full Text] [Related]

  • 9. Termination of trigeminal primary afferents on glossopharyngeal-vagal motoneurons: possible neural networks underlying the swallowing phase and visceromotor responses of prey-catching behavior.
    Kecskes S, Matesz C, Birinyi A.
    Brain Res Bull; 2013 Oct 22; 99():109-16. PubMed ID: 24076270
    [Abstract] [Full Text] [Related]

  • 10. Quantitative morphological analysis of the motoneurons innervating muscles involved in tongue movements of the frog Rana esculenta.
    Birinyi A, Szekely G, Csapó K, Matesz C.
    J Comp Neurol; 2004 Mar 15; 470(4):409-21. PubMed ID: 14961566
    [Abstract] [Full Text] [Related]

  • 11. Hypoglossal motoneurons in newborn mice receive respiratory drive from both sides of the medulla.
    Tarras-Wahlberg S, Rekling JC.
    Neuroscience; 2009 Jun 16; 161(1):259-68. PubMed ID: 19272422
    [Abstract] [Full Text] [Related]

  • 12. Genioglossal hypoglossal muscle motoneurons are contacted by nerve terminals containing delta opioid receptor but not mu opioid receptor-like immunoreactivity in the cat: a dual labeling electron microscopic study.
    Richardson KA, Gatti PJ.
    Brain Res; 2005 Jan 25; 1032(1-2):23-9. PubMed ID: 15680937
    [Abstract] [Full Text] [Related]

  • 13. Neuronal circuitry and synaptic organization of trigeminal proprioceptive afferents mediating tongue movement and jaw-tongue coordination via hypoglossal premotor neurons.
    Luo P, Zhang J, Yang R, Pendlebury W.
    Eur J Neurosci; 2006 Jun 25; 23(12):3269-83. PubMed ID: 16820017
    [Abstract] [Full Text] [Related]

  • 14. The dorsomedial nuclear group of cranial nerves in the frog.
    Matesz C, Székely G.
    Acta Biol Acad Sci Hung; 1977 Jun 25; 28(4):461-74. PubMed ID: 308756
    [Abstract] [Full Text] [Related]

  • 15. Thyrotropin-releasing hormone inputs are preferentially directed towards respiratory motoneurons in rat nucleus ambiguus.
    Sun QJ, Pilowsky P, Llewellyn-Smith IJ.
    J Comp Neurol; 1995 Nov 20; 362(3):320-30. PubMed ID: 8576442
    [Abstract] [Full Text] [Related]

  • 16. Topographically organized projections from the nucleus subceruleus to the hypoglossal nucleus in the rat: a light and electron microscopic study with complementary axonal transport techniques.
    Aldes LD.
    J Comp Neurol; 1990 Dec 15; 302(3):643-56. PubMed ID: 1702122
    [Abstract] [Full Text] [Related]

  • 17. Immunocytochemical localization of gamma-aminobutyric acid in the hypoglossal nucleus of the macaque monkey, Macaca fuscata: a light and electron microscopic study.
    Takasu N, Nakatani T, Arikuni T, Kimura H.
    J Comp Neurol; 1987 Sep 01; 263(1):42-53. PubMed ID: 3667970
    [Abstract] [Full Text] [Related]

  • 18. Organization of the motor centres for the innervation of different muscles of the tongue: a neuromorphological study in the frog.
    Matesz C, Schmidt I, Szabo L, Birinyi A, Székely G.
    Eur J Morphol; 1999 Apr 01; 37(2-3):190-4. PubMed ID: 10342455
    [Abstract] [Full Text] [Related]

  • 19. Bilateral projection of functionally characterized trigeminal oralis neurons to trigeminal motoneurons in cats.
    Yoshida A, Yamamoto M, Moritani M, Fukami H, Bae YC, Chang Z, Sugiyo S, Takemura M, Park KP, Shigenaga Y.
    Brain Res; 2005 Mar 02; 1036(1-2):208-12. PubMed ID: 15725420
    [Abstract] [Full Text] [Related]

  • 20. Thyrotropin-releasing hormone-immunoreactive varicosities synapse on rat phrenic motoneurons.
    Murphy SM, Pilowsky PM, Sun QJ, Llewellyn-Smith IJ.
    J Comp Neurol; 1995 Aug 21; 359(2):310-22. PubMed ID: 7499531
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.