These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


82 related items for PubMed ID: 19962904

  • 1. Root-uptake of (14)C derived from acetic acid and (14)C transfer to rice edible parts.
    Ogiyama S, Suzuki H, Inubushi K, Takeda H, Uchida S.
    Appl Radiat Isot; 2010 Feb; 68(2):256-64. PubMed ID: 19962904
    [Abstract] [Full Text] [Related]

  • 2. Migration of (14)C in the paddy soil-to-rice plant system after (14)C-acetic acid breakdown by microorganisms below the plow layer.
    Ogiyama S, Takeda H, Ishii N, Uchida S.
    J Environ Radioact; 2010 Feb; 101(2):177-84. PubMed ID: 19896253
    [Abstract] [Full Text] [Related]

  • 3. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.
    Liu H, Zhang J, Christie P, Zhang F.
    Sci Total Environ; 2008 May 15; 394(2-3):361-8. PubMed ID: 18325566
    [Abstract] [Full Text] [Related]

  • 4. Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain.
    Liu J, Qian M, Cai G, Yang J, Zhu Q.
    J Hazard Mater; 2007 May 08; 143(1-2):443-7. PubMed ID: 17079078
    [Abstract] [Full Text] [Related]

  • 5. Malate exudation by six aerobic rice genotypes varying in zinc uptake efficiency.
    Gao X, Zhang F, Hoffland E.
    J Environ Qual; 2009 May 08; 38(6):2315-21. PubMed ID: 19875787
    [Abstract] [Full Text] [Related]

  • 6. Uptake and distribution of 90Sr and stable Sr in rice plants.
    Tsukada H, Takeda A, Takahashi T, Hasegawa H, Hisamatsu S, Inaba J.
    J Environ Radioact; 2005 May 08; 81(2-3):221-31. PubMed ID: 15795036
    [Abstract] [Full Text] [Related]

  • 7. Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow.
    Gong HJ, Randall DP, Flowers TJ.
    Plant Cell Environ; 2006 Oct 08; 29(10):1970-9. PubMed ID: 16930322
    [Abstract] [Full Text] [Related]

  • 8. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings.
    Hu ZY, Zhu YG, Li M, Zhang LG, Cao ZH, Smith FA.
    Environ Pollut; 2007 May 08; 147(2):387-93. PubMed ID: 16996667
    [Abstract] [Full Text] [Related]

  • 9. Effects of root anatomy and Fe plaque on arsenic uptake by rice seedlings grown in solution culture.
    Deng D, Wu SC, Wu FY, Deng H, Wong MH.
    Environ Pollut; 2010 Aug 08; 158(8):2589-95. PubMed ID: 20542361
    [Abstract] [Full Text] [Related]

  • 10. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling.
    Yang J, Zhang J, Wang Z, Zhu Q, Liu L.
    Planta; 2002 Aug 08; 215(4):645-52. PubMed ID: 12172848
    [Abstract] [Full Text] [Related]

  • 11. Variations among rice cultivars on root oxidation and Cd uptake.
    Liu JG, Wang DK, Xu JK, Zhu QS, Wong MH.
    J Environ Sci (China); 2006 Aug 08; 18(1):120-4. PubMed ID: 20050559
    [Abstract] [Full Text] [Related]

  • 12. Hydroxyiminodisuccinic acid (HIDS): A novel biodegradable chelating ligand for the increase of iron bioavailability and arsenic phytoextraction.
    Rahman MA, Hasegawa H, Kadohashi K, Maki T, Ueda K.
    Chemosphere; 2009 Sep 08; 77(2):207-13. PubMed ID: 19665755
    [Abstract] [Full Text] [Related]

  • 13. Differential accumulation of Cd in durum wheat cultivars: uptake and retranslocation as sources of variation.
    Chan DY, Hale BA.
    J Exp Bot; 2004 Dec 08; 55(408):2571-9. PubMed ID: 15361533
    [Abstract] [Full Text] [Related]

  • 14. Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil.
    Xu J, Yang L, Wang Z, Dong G, Huang J, Wang Y.
    Chemosphere; 2006 Jan 08; 62(4):602-7. PubMed ID: 16081136
    [Abstract] [Full Text] [Related]

  • 15. Predicting the transfer of 137Cs to rice plants by a dynamic compartment model with a consideration of the soil properties.
    Keum DK, Lee H, Kang HS, Jun I, Choi YH, Lee CW.
    J Environ Radioact; 2007 Jan 08; 92(1):1-15. PubMed ID: 17081663
    [Abstract] [Full Text] [Related]

  • 16. Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water.
    Smith E, Juhasz AL, Weber J, Naidu R.
    Sci Total Environ; 2008 Mar 25; 392(2-3):277-83. PubMed ID: 18164371
    [Abstract] [Full Text] [Related]

  • 17. Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou city, People's Republic of China.
    Liu WX, Shen LF, Liu JW, Wang YW, Li SR.
    Bull Environ Contam Toxicol; 2007 Aug 25; 79(2):209-13. PubMed ID: 17639323
    [Abstract] [Full Text] [Related]

  • 18. Involvement of ARM2 in the uptake of indole-3-butyric acid in rice (Oryza sativa L.) roots.
    Chhun T, Taketa S, Ichii M, Tsurumi S.
    Plant Cell Physiol; 2005 Jul 25; 46(7):1161-4. PubMed ID: 15879448
    [Abstract] [Full Text] [Related]

  • 19. Root uptake of radionuclides following their acute soil depositions during the growth of selected food crops.
    Choi YH, Lim KM, Jun I, Park DW, Keum DK, Lee CW.
    J Environ Radioact; 2009 Sep 25; 100(9):746-51. PubMed ID: 19188006
    [Abstract] [Full Text] [Related]

  • 20. Transport mechanisms for the uptake of organic compounds by rice (Oryza sativa) roots.
    Su YH, Zhu YG.
    Environ Pollut; 2007 Jul 25; 148(1):94-100. PubMed ID: 17240019
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.