These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1742 related items for PubMed ID: 19966284
1. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrané J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S. Proc Natl Acad Sci U S A; 2010 Jan 05; 107(1):378-83. PubMed ID: 19966284 [Abstract] [Full Text] [Related]
2. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease. Koentjoro B, Park JS, Sue CM. Sci Rep; 2017 Mar 10; 7():44373. PubMed ID: 28281653 [Abstract] [Full Text] [Related]
3. Parkinson's disease-associated VPS35 mutant reduces mitochondrial membrane potential and impairs PINK1/Parkin-mediated mitophagy. Ma KY, Fokkens MR, Reggiori F, Mari M, Verbeek DS. Transl Neurodegener; 2021 Jun 15; 10(1):19. PubMed ID: 34127073 [Abstract] [Full Text] [Related]
4. Role of glucose metabolism and ATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses. Lee S, Zhang C, Liu X. J Biol Chem; 2015 Jan 09; 290(2):904-17. PubMed ID: 25404737 [Abstract] [Full Text] [Related]
5. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K. J Cell Biol; 2010 Apr 19; 189(2):211-21. PubMed ID: 20404107 [Abstract] [Full Text] [Related]
6. PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. Kawajiri S, Saiki S, Sato S, Sato F, Hatano T, Eguchi H, Hattori N. FEBS Lett; 2010 Mar 19; 584(6):1073-9. PubMed ID: 20153330 [Abstract] [Full Text] [Related]
7. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. Rakovic A, Shurkewitsch K, Seibler P, Grünewald A, Zanon A, Hagenah J, Krainc D, Klein C. J Biol Chem; 2013 Jan 25; 288(4):2223-37. PubMed ID: 23212910 [Abstract] [Full Text] [Related]
8. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW. Hum Mol Genet; 2010 Dec 15; 19(24):4861-70. PubMed ID: 20871098 [Abstract] [Full Text] [Related]
9. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, Hattori N. Sci Rep; 2012 Dec 15; 2():1002. PubMed ID: 23256036 [Abstract] [Full Text] [Related]
10. Temporal integration of mitochondrial stress signals by the PINK1:Parkin pathway. Bowling JL, Skolfield MC, Riley WA, Nolin AP, Wolf LC, Nelson DE. BMC Mol Cell Biol; 2019 Aug 14; 20(1):33. PubMed ID: 31412778 [Abstract] [Full Text] [Related]
11. Alleviation of CCCP-induced mitochondrial injury by augmenter of liver regeneration via the PINK1/Parkin pathway-dependent mitophagy. Zhang J, Chen S, Li Y, Xiao W, An W. Exp Cell Res; 2021 Dec 01; 409(1):112866. PubMed ID: 34655600 [Abstract] [Full Text] [Related]
12. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W. Nat Cell Biol; 2010 Feb 01; 12(2):119-31. PubMed ID: 20098416 [Abstract] [Full Text] [Related]
13. Nitric oxide induction of Parkin translocation in PTEN-induced putative kinase 1 (PINK1) deficiency: functional role of neuronal nitric oxide synthase during mitophagy. Han JY, Kang MJ, Kim KH, Han PL, Kim HS, Ha JY, Son JH. J Biol Chem; 2015 Apr 17; 290(16):10325-35. PubMed ID: 25716315 [Abstract] [Full Text] [Related]
14. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Narendra DP, Youle RJ. Antioxid Redox Signal; 2011 May 15; 14(10):1929-38. PubMed ID: 21194381 [Abstract] [Full Text] [Related]
15. Parkin and PINK1 functions in oxidative stress and neurodegeneration. Barodia SK, Creed RB, Goldberg MS. Brain Res Bull; 2017 Jul 15; 133():51-59. PubMed ID: 28017782 [Abstract] [Full Text] [Related]
16. The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance. Bertolin G, Ferrando-Miguel R, Jacoupy M, Traver S, Grenier K, Greene AW, Dauphin A, Waharte F, Bayot A, Salamero J, Lombès A, Bulteau AL, Fon EA, Brice A, Corti O. Autophagy; 2013 Nov 01; 9(11):1801-17. PubMed ID: 24149440 [Abstract] [Full Text] [Related]
17. Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients. Rakovic A, Grünewald A, Seibler P, Ramirez A, Kock N, Orolicki S, Lohmann K, Klein C. Hum Mol Genet; 2010 Aug 15; 19(16):3124-37. PubMed ID: 20508036 [Abstract] [Full Text] [Related]
18. The Role of PTEN-L in Modulating PINK1-Parkin-Mediated Mitophagy. Eldeeb MA, Esmaili M, Hassan M, Ragheb MA. Neurotox Res; 2022 Aug 15; 40(4):1103-1114. PubMed ID: 35699891 [Abstract] [Full Text] [Related]
19. Convergence of Parkin, PINK1, and α-Synuclein on Stress-induced Mitochondrial Morphological Remodeling. Norris KL, Hao R, Chen LF, Lai CH, Kapur M, Shaughnessy PJ, Chou D, Yan J, Taylor JP, Engelender S, West AE, Lim KL, Yao TP. J Biol Chem; 2015 May 29; 290(22):13862-74. PubMed ID: 25861987 [Abstract] [Full Text] [Related]
20. PGAM5 regulates PINK1/Parkin-mediated mitophagy via DRP1 in CCCP-induced mitochondrial dysfunction. Park YS, Choi SE, Koh HC. Toxicol Lett; 2018 Mar 01; 284():120-128. PubMed ID: 29241732 [Abstract] [Full Text] [Related] Page: [Next] [New Search]