These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


798 related items for PubMed ID: 19969213

  • 1. Dry eyes and corneal sensation after laser in situ keratomileusis with femtosecond laser flap creation Effect of hinge position, hinge angle, and flap thickness.
    Mian SI, Li AY, Dutta S, Musch DC, Shtein RM.
    J Cataract Refract Surg; 2009 Dec; 35(12):2092-8. PubMed ID: 19969213
    [Abstract] [Full Text] [Related]

  • 2. Effect of hinge position on corneal sensation and dry eye after laser in situ keratomileusis using a femtosecond laser.
    Mian SI, Shtein RM, Nelson A, Musch DC.
    J Cataract Refract Surg; 2007 Jul; 33(7):1190-4. PubMed ID: 17586374
    [Abstract] [Full Text] [Related]

  • 3. The effect of hinge position on corneal sensation and dry eye after LASIK.
    Donnenfeld ED, Solomon K, Perry HD, Doshi SJ, Ehrenhaus M, Solomon R, Biser S.
    Ophthalmology; 2003 May; 110(5):1023-9; discussion 1029-30. PubMed ID: 12750107
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Effect of hinge location on corneal sensation and dry eye after laser in situ keratomileusis for myopia.
    Vroman DT, Sandoval HP, Fernández de Castro LE, Kasper TJ, Holzer MP, Solomon KD.
    J Cataract Refract Surg; 2005 Oct; 31(10):1881-7. PubMed ID: 16338555
    [Abstract] [Full Text] [Related]

  • 6. Effect of hinge width on corneal sensation and dry eye after laser in situ keratomileusis.
    Donnenfeld ED, Ehrenhaus M, Solomon R, Mazurek J, Rozell JC, Perry HD.
    J Cataract Refract Surg; 2004 Apr; 30(4):790-7. PubMed ID: 15093640
    [Abstract] [Full Text] [Related]

  • 7. The incidence and risk factors for developing dry eye after myopic LASIK.
    De Paiva CS, Chen Z, Koch DD, Hamill MB, Manuel FK, Hassan SS, Wilhelmus KR, Pflugfelder SC.
    Am J Ophthalmol; 2006 Mar; 141(3):438-45. PubMed ID: 16490488
    [Abstract] [Full Text] [Related]

  • 8. Thresholds for interface haze formation after thin-flap femtosecond laser in situ keratomileusis for myopia.
    Rocha KM, Kagan R, Smith SD, Krueger RR.
    Am J Ophthalmol; 2009 Jun; 147(6):966-72, 972.e1. PubMed ID: 19327748
    [Abstract] [Full Text] [Related]

  • 9. Measurement of corneal curvature change after mechanical laser in situ keratomileusis flap creation and femtosecond laser flap creation.
    Ortiz D, Alió JL, Piñero D.
    J Cataract Refract Surg; 2008 Feb; 34(2):238-42. PubMed ID: 18242446
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Femtosecond laser versus mechanical keratome flaps in wavefront-guided laser in situ keratomileusis: prospective contralateral eye study.
    Durrie DS, Kezirian GM.
    J Cataract Refract Surg; 2005 Jan; 31(1):120-6. PubMed ID: 15721704
    [Abstract] [Full Text] [Related]

  • 13. Cox proportional hazards model of myopic regression for laser in situ keratomileusis flap creation with a femtosecond laser and with a mechanical microkeratome.
    Lin MY, Chang DC, Hsu WM, Wang IJ.
    J Cataract Refract Surg; 2012 Jun; 38(6):992-9. PubMed ID: 22624898
    [Abstract] [Full Text] [Related]

  • 14. Differences in the corneal biomechanical effects of surface ablation compared with laser in situ keratomileusis using a microkeratome or femtosecond laser.
    Hamilton DR, Johnson RD, Lee N, Bourla N.
    J Cataract Refract Surg; 2008 Dec; 34(12):2049-56. PubMed ID: 19027558
    [Abstract] [Full Text] [Related]

  • 15. Flap and stromal bed thickness in laser in situ keratomileusis enhancement.
    Muallem MS, Yoo SH, Romano AC, Marangon FB, Schiffman JC, Culbertson WW.
    J Cataract Refract Surg; 2004 Nov; 30(11):2295-302. PubMed ID: 15519078
    [Abstract] [Full Text] [Related]

  • 16. Femtosecond laser versus mechanical keratome LASIK for myopia.
    Montés-Micó R, Rodríguez-Galietero A, Alió JL.
    Ophthalmology; 2007 Jan; 114(1):62-8. PubMed ID: 17070593
    [Abstract] [Full Text] [Related]

  • 17. Predictive factors of femtosecond laser flap thickness measured by online optical coherence pachymetry subtraction in sub-Bowman keratomileusis.
    Pfaeffl WA, Kunze M, Zenk U, Pfaeffl MB, Schuster T, Lohmann C.
    J Cataract Refract Surg; 2008 Nov; 34(11):1872-80. PubMed ID: 19006732
    [Abstract] [Full Text] [Related]

  • 18. Nerve growth factor concentration and implications in photorefractive keratectomy vs laser in situ keratomileusis.
    Lee HK, Lee KS, Kim HC, Lee SH, Kim EK.
    Am J Ophthalmol; 2005 Jun; 139(6):965-71. PubMed ID: 15953424
    [Abstract] [Full Text] [Related]

  • 19. Femtosecond laser versus mechanical microkeratome for LASIK: a randomized controlled study.
    Patel SV, Maguire LJ, McLaren JW, Hodge DO, Bourne WM.
    Ophthalmology; 2007 Aug; 114(8):1482-90. PubMed ID: 17350688
    [Abstract] [Full Text] [Related]

  • 20. Efficacy, safety, and flap dimensions of a new femtosecond laser for laser in situ keratomileusis.
    Vryghem JC, Devogelaere T, Stodulka P.
    J Cataract Refract Surg; 2010 Mar; 36(3):442-8. PubMed ID: 20202543
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 40.