These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Relationship between oxidative hepatic metabolism, urinary sodium excretion and sympathetic nerve activity in experimental cirrhosis in the rat. Wensing G, Sabra R, Branch RA. Z Gastroenterol; 1995 Jan; 33(1):1-4. PubMed ID: 7886979 [Abstract] [Full Text] [Related]
3. Increased natriuretic efficiency of furosemide in rats with carbon tetrachloride-induced cirrhosis. Jonassen TE, Sørensen AM, Petersen JS, Andreasen F, Christensen S. Hepatology; 2000 Jun; 31(6):1224-30. PubMed ID: 10827146 [Abstract] [Full Text] [Related]
4. [Renal effects of the chronic inhibition of nitric oxide synthesis in cirrhotic rats with ascites]. Ortiz MC, Fortepiani LA, Martínez-Salgado C, Eleno N, Atucha NM, López-Novoa JM, García-Estañ J. Nefrologia; 2001 Jun; 21(6):556-64. PubMed ID: 11881425 [Abstract] [Full Text] [Related]
5. Increased aortic cyclic guanosine monophosphate concentration in experimental cirrhosis in rats: evidence for a role of nitric oxide in the pathogenesis of arterial vasodilation in cirrhosis. Niederberger M, Ginès P, Tsai P, Martin PY, Morris K, Weigert A, McMurtry I, Schrier RW. Hepatology; 1995 Jun; 21(6):1625-31. PubMed ID: 7768508 [Abstract] [Full Text] [Related]
6. Relationship between sodium balance and renal innervation during hypertension development in the spontaneously hypertensive rat. Greenberg S, Osborn JL. J Hypertens; 1994 Dec; 12(12):1359-64. PubMed ID: 7706694 [Abstract] [Full Text] [Related]
7. Early altered renal sodium handling determined by lithium clearance in spontaneously hypertensive rats (SHR): role of renal nerves. Boer PA, Morelli JM, Figueiredo JF, Gontijo JA. Life Sci; 2005 Mar 04; 76(16):1805-15. PubMed ID: 15698858 [Abstract] [Full Text] [Related]
8. [Metabolic balances of sodium and water in young spontaneously hypertensive rats and the effects of chronic inhibition of the conversion enzyme]. Tran-Van T, Praddaude F, Ader JL. Arch Mal Coeur Vaiss; 1987 Jun 04; 80(6):856-61. PubMed ID: 3116986 [Abstract] [Full Text] [Related]
9. Comparison of vascular nitric oxide production and systemic hemodynamics in cirrhosis versus prehepatic portal hypertension in rats. Niederberger M, Ginés P, Martin PY, Tsai P, Morris K, McMurtry I, Schrier RW. Hepatology; 1996 Oct 04; 24(4):947-51. PubMed ID: 8855203 [Abstract] [Full Text] [Related]
10. Comparison of two aquaretic drugs (niravoline and OPC-31260) in cirrhotic rats with ascites and water retention. Bosch-Marcé M, Poo JL, Jiménez W, Bordas N, Leivas A, Morales-Ruiz M, Muñoz RM, Pérez M, Arroyo V, Rivera F, Rodés J. J Pharmacol Exp Ther; 1999 Apr 04; 289(1):194-201. PubMed ID: 10087004 [Abstract] [Full Text] [Related]
11. A novel sodium overload test predicting ascites decompensation in rats with CCl4-induced cirrhosis. Domenicali M, Caraceni P, Principe A, Pertosa AM, Ros J, Chieco P, Trevisani F, Jiménez W, Bernardi M. J Hepatol; 2005 Jul 04; 43(1):92-7. PubMed ID: 15893844 [Abstract] [Full Text] [Related]
12. Temporal relationship between hyperaldosteronism, sodium retention and ascites formation in rats with experimental cirrhosis. Jiménez W, Martinez-Pardo A, Arroyo V, Bruix J, Rimola A, Gaya J, Rivera F, Rodés J. Hepatology; 1985 Jul 04; 5(2):245-50. PubMed ID: 3979957 [Abstract] [Full Text] [Related]
13. Effect of prepuberal gonadectomy upon aldosterone levels in female and male SHR: interaction between blood pressure and kallikrein kinin system. Oddo EM, de Luca Sarobe V, Krmar R, Periz GA, Herrera H, Martín RS, Ibarra FR, Arrizurieta EE. Clin Exp Hypertens; 2006 Feb 04; 28(2):157-70. PubMed ID: 16546841 [Abstract] [Full Text] [Related]
14. Pathogenesis of water and sodium retention in cirrhosis. Martin PY, Schrier RW. Kidney Int Suppl; 1997 Jun 04; 59():S43-9. PubMed ID: 9185104 [Abstract] [Full Text] [Related]
15. Atrial natriuretic peptide, arginine vasopressin, aldosterone and plasma renin activity in carbon tetrachloride-induced cirrhosis in rats. Elias AN, Vaziri ND, Domurat ES, Pandian MR, Ansari MA, Yazdani M. J Pharmacol Exp Ther; 1990 Jan 04; 252(1):438-41. PubMed ID: 2137178 [Abstract] [Full Text] [Related]
16. The renin-angiotensin-aldosterone system in decompensated cirrhosis: its activity in relation to sodium balance. Sellars L, Shore AC, Mott V, Wilkinson R. Q J Med; 1985 Aug 04; 56(220):485-96. PubMed ID: 3901077 [Abstract] [Full Text] [Related]
17. Haemodynamic and renal evolution of the bile duct-ligated rat. Martínez-Prieto C, Ortíz MC, Fortepiani LA, Ruiz-Maciá J, Atucha NM, García-Estañ J. Clin Sci (Lond); 2000 May 04; 98(5):611-7. PubMed ID: 10781394 [Abstract] [Full Text] [Related]
18. Effect of atrial natriuretic peptide on arterial pressure and renal function in cirrhotic rats with ascites. López C, Jiménez W, Arroyo V, Gaya J, Rivera F, Rodés J. Rev Esp Fisiol; 1988 Sep 04; 44(3):265-72. PubMed ID: 2976517 [Abstract] [Full Text] [Related]
19. Cannabinoid type 1 receptor antagonism delays ascites formation in rats with cirrhosis. Domenicali M, Caraceni P, Giannone F, Pertosa AM, Principe A, Zambruni A, Trevisani F, Croci T, Bernardi M. Gastroenterology; 2009 Jul 04; 137(1):341-9. PubMed ID: 19208344 [Abstract] [Full Text] [Related]
20. Enhanced slow-pressor response to angiotensin II in spontaneously hypertensive rats. Li P, Jackson EK. J Pharmacol Exp Ther; 1989 Dec 04; 251(3):909-21. PubMed ID: 2557422 [Abstract] [Full Text] [Related] Page: [Next] [New Search]