These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


303 related items for PubMed ID: 19994530

  • 1. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.
    Yoriyaz H, Moralles M, Siqueira Pde T, Guimarães Cda C, Cintra FB, dos Santos A.
    Med Phys; 2009 Nov; 36(11):5198-213. PubMed ID: 19994530
    [Abstract] [Full Text] [Related]

  • 2. A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other Monte Carlo codes.
    Papadimitroulas P, Loudos G, Nikiforidis GC, Kagadis GC.
    Med Phys; 2012 Aug; 39(8):5238-47. PubMed ID: 22894448
    [Abstract] [Full Text] [Related]

  • 3. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F, Mairani A, Battistoni G, Cremonesi M, Di Dia A, Fassò A, Ferrari A, Ferrari M, Paganelli G, Pedroli G, Valente M.
    Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991
    [Abstract] [Full Text] [Related]

  • 4. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations.
    Pacilio M, Lanconelli N, Lo MS, Betti M, Montani L, Torres AL, Coca PM.
    Med Phys; 2009 May; 36(5):1543-52. PubMed ID: 19544770
    [Abstract] [Full Text] [Related]

  • 5. Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport.
    Jia X, Gu X, Sempau J, Choi D, Majumdar A, Jiang SB.
    Phys Med Biol; 2010 Jun 07; 55(11):3077-86. PubMed ID: 20463376
    [Abstract] [Full Text] [Related]

  • 6. Validation of GEANT4, an object-oriented Monte Carlo toolkit, for simulations in medical physics.
    Carrier JF, Archambault L, Beaulieu L, Roy R.
    Med Phys; 2004 Mar 07; 31(3):484-92. PubMed ID: 15070244
    [Abstract] [Full Text] [Related]

  • 7. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons.
    Hadid L, Desbrée A, Schlattl H, Franck D, Blanchardon E, Zankl M.
    Phys Med Biol; 2010 Jul 07; 55(13):3631-41. PubMed ID: 20526035
    [Abstract] [Full Text] [Related]

  • 8. Energy-loss straggling algorithms for Monte Carlo electron transport.
    Chibani O.
    Med Phys; 2002 Oct 07; 29(10):2374-83. PubMed ID: 12408312
    [Abstract] [Full Text] [Related]

  • 9. Latent uncertainties of the precalculated track Monte Carlo method.
    Renaud MA, Roberge D, Seuntjens J.
    Med Phys; 2015 Jan 07; 42(1):479-90. PubMed ID: 25563287
    [Abstract] [Full Text] [Related]

  • 10. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H, Chouin N, Bernhardt P, Ferrer L, Bardiès M, Forssell-Aronsson E.
    Cancer Biother Radiopharm; 2009 Aug 07; 24(4):461-7. PubMed ID: 19694581
    [Abstract] [Full Text] [Related]

  • 11. Fast voxel-level dosimetry for (177)Lu labelled peptide treatments.
    Hippeläinen E, Tenhunen M, Sohlberg A.
    Phys Med Biol; 2015 Sep 07; 60(17):6685-700. PubMed ID: 26270032
    [Abstract] [Full Text] [Related]

  • 12. Evaluation of PENFAST--a fast Monte Carlo code for dose calculations in photon and electron radiotherapy treatment planning.
    Habib B, Poumarede B, Tola F, Barthe J.
    Phys Med; 2010 Jan 07; 26(1):17-25. PubMed ID: 19342258
    [Abstract] [Full Text] [Related]

  • 13. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC, Jiang R.
    Phys Med Biol; 2012 Jun 21; 57(12):3885-99. PubMed ID: 22642985
    [Abstract] [Full Text] [Related]

  • 14. Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark.
    Renner F, Wulff J, Kapsch RP, Zink K.
    Phys Med Biol; 2015 Oct 07; 60(19):7637-53. PubMed ID: 26389610
    [Abstract] [Full Text] [Related]

  • 15. Re-evaluation of absorbed fractions for photons and electrons in spheres of various sizes.
    Stabin MG, Konijnenberg MW.
    J Nucl Med; 2000 Jan 07; 41(1):149-60. PubMed ID: 10647618
    [Abstract] [Full Text] [Related]

  • 16. A new concept of pencil beam dose calculation for 40-200 keV photons using analytical dose kernels.
    Bartzsch S, Oelfke U.
    Med Phys; 2013 Nov 07; 40(11):111714. PubMed ID: 24320422
    [Abstract] [Full Text] [Related]

  • 17. Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements.
    Chibani O, Li XA.
    Med Phys; 2002 May 07; 29(5):835-47. PubMed ID: 12033580
    [Abstract] [Full Text] [Related]

  • 18. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons.
    Xie T, Han D, Liu Y, Sun W, Liu Q.
    Med Phys; 2010 May 07; 37(5):2167-78. PubMed ID: 20527551
    [Abstract] [Full Text] [Related]

  • 19. Effect of respiratory motion on internal radiation dosimetry.
    Xie T, Zaidi H.
    Med Phys; 2014 Nov 07; 41(11):112506. PubMed ID: 25370665
    [Abstract] [Full Text] [Related]

  • 20. Modeling energy deposition in trabecular spongiosa using the Monte Carlo code PENELOPE.
    Gersh JA, Dingfelder M, Toburen LH.
    Health Phys; 2007 Jul 07; 93(1):47-59. PubMed ID: 17563492
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.