These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
91 related items for PubMed ID: 20000732
1. Degradation of 1,2,3-trichloropropane (TCP): hydrolysis, elimination, and reduction by iron and zinc. Sarathy V, Salter AJ, Nurmi JT, O'Brien Johnson G, Johnson RL, Tratnyek PG. Environ Sci Technol; 2010 Jan 15; 44(2):787-93. PubMed ID: 20000732 [Abstract] [Full Text] [Related]
2. Comments on "Degradation of 1,2,3-trichloropropane (TCP): hydrolysis, elimination, and reduction by iron and zinc". Noubactep C. Environ Sci Technol; 2010 Apr 15; 44(8):3197; author reply 3198-9. PubMed ID: 20192163 [No Abstract] [Full Text] [Related]
3. Effects of solution chemistry on the dechlorination of 1,2,3-trichloropropane by zero-valent zinc. Salter-Blanc AJ, Tratnyek PG. Environ Sci Technol; 2011 May 01; 45(9):4073-9. PubMed ID: 21486040 [Abstract] [Full Text] [Related]
4. Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers: laboratory studies. Choi JH, Kim YH, Choi SJ. Chemosphere; 2007 Apr 01; 67(8):1551-7. PubMed ID: 17287004 [Abstract] [Full Text] [Related]
5. Effects of dissolved oxygen and iron aging on the reduction of trichloronitromethane, trichloracetonitrile, and trichloropropanone. Lee JY, Hozalski RM, Arnold WA. Chemosphere; 2007 Feb 01; 66(11):2127-35. PubMed ID: 17095038 [Abstract] [Full Text] [Related]
6. Abiotic natural attenuation of 1,2,3-trichloropropane by natural magnetite under O2 perturbation. Gu C, Li J, Zhou W, An J, Tian L, Xiong F, Fei W, Feng Y, Ma J. Chemosphere; 2024 Jun 01; 357():142040. PubMed ID: 38615949 [Abstract] [Full Text] [Related]
7. Effects of iron type in Fenton reaction on mineralization and biodegradability enhancement of hazardous organic compounds. Khan E, Wirojanagud W, Sermsai N. J Hazard Mater; 2009 Jan 30; 161(2-3):1024-34. PubMed ID: 18502575 [Abstract] [Full Text] [Related]
8. Reduction of 1,2,3-trichloropropane (TCP): pathways and mechanisms from computational chemistry calculations. Torralba-Sanchez TL, Bylaska EJ, Salter-Blanc AJ, Meisenheimer DE, Lyon MA, Tratnyek PG. Environ Sci Process Impacts; 2020 Mar 01; 22(3):606-616. PubMed ID: 31990012 [Abstract] [Full Text] [Related]
9. Uptake of Zn2+ ions by a fully iron-exchanged clinoptilolite. Case study of heavily contaminated drinking water samples. Dimirkou A. Water Res; 2007 Jun 01; 41(12):2763-73. PubMed ID: 17445862 [Abstract] [Full Text] [Related]
10. Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: Implications for groundwater nitrate remediation using permeable reactive barriers. Su C, Puls RW. Chemosphere; 2007 Apr 01; 67(8):1653-62. PubMed ID: 17257645 [Abstract] [Full Text] [Related]
11. In Situ Persulfate Oxidation of 1,2,3-Trichloropropane in Groundwater of North China Plain. Li H, Han Z, Qian Y, Kong X, Wang P. Int J Environ Res Public Health; 2019 Aug 01; 16(15):. PubMed ID: 31374962 [Abstract] [Full Text] [Related]
12. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron. Doong RA, Lai YL. Chemosphere; 2006 Jun 01; 64(3):371-8. PubMed ID: 16466778 [Abstract] [Full Text] [Related]
13. NTP carcinogenesis studies of 2,2-bis(bromomethyl)-1,3-propanediol, nitromethane, and 1,2,3-trichloropropane (cas nos. 3296-90-0, 75-52-5, and 96-18-4) in guppies (Poecilia reticulata) and medaka (Oryzias latipes) (Waterborne Studies). National Toxicology ProgramNational Toxicology Program, PO Box 12233, Research Triangle Park, NC 27709, USA.. Natl Toxicol Program Tech Rep Ser; 2005 Oct 01; (528):1-190. PubMed ID: 16362062 [Abstract] [Full Text] [Related]
14. Transformation and biodegradation of 1,2,3-trichloropropane (TCP). Samin G, Janssen DB. Environ Sci Pollut Res Int; 2012 Sep 01; 19(8):3067-78. PubMed ID: 22875418 [Abstract] [Full Text] [Related]
15. Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron. Lookman R, Bastiaens L, Borremans B, Maesen M, Gemoets J, Diels L. J Contam Hydrol; 2004 Oct 01; 74(1-4):133-44. PubMed ID: 15358490 [Abstract] [Full Text] [Related]
16. Role of Nitrogenous Functional Group Identity in Accelerating 1,2,3-Trichloropropane Degradation by Pyrogenic Carbonaceous Matter (PCM) and Sulfide Using PCM-like Polymers. Cao H, Mao J, Tratnyek PG, Xu W. Environ Sci Technol; 2024 Jun 18; 58(24):10752-10763. PubMed ID: 38848107 [Abstract] [Full Text] [Related]
17. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications. Hilty FM, Teleki A, Krumeich F, Büchel R, Hurrell RF, Pratsinis SE, Zimmermann MB. Nanotechnology; 2009 Nov 25; 20(47):475101. PubMed ID: 19875869 [Abstract] [Full Text] [Related]
18. On nanoscale metallic iron for groundwater remediation. Noubactep C, Caré S. J Hazard Mater; 2010 Oct 15; 182(1-3):923-7. PubMed ID: 20594643 [Abstract] [Full Text] [Related]
19. Interaction of 2,4,6-trichlorophenol with high carbon iron filings: Reaction and sorption mechanisms. Sinha A, Bose P. J Hazard Mater; 2009 May 15; 164(1):301-9. PubMed ID: 18838219 [Abstract] [Full Text] [Related]
20. Reduction of 2,4,6-trichlorophenol with zero-valent zinc and catalyzed zinc. Choi JH, Kim YH. J Hazard Mater; 2009 Jul 30; 166(2-3):984-91. PubMed ID: 19171423 [Abstract] [Full Text] [Related] Page: [Next] [New Search]