These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 20006091
1. Immobilization of enzyme on detonation nanodiamond for highly efficient proteolysis. Wei L, Zhang W, Lu H, Yang P. Talanta; 2010 Jan 15; 80(3):1298-304. PubMed ID: 20006091 [Abstract] [Full Text] [Related]
2. Novel superparamagnetic sanoparticles for trypsin immobilization and the application for efficient proteolysis. Sun J, Hu K, Liu Y, Pan Y, Yang Y. J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Dec 30; 942-943():9-14. PubMed ID: 24211332 [Abstract] [Full Text] [Related]
3. A hydrophilic immobilized trypsin reactor with N-vinyl-2-pyrrolidinone modified polymer microparticles as matrix for highly efficient protein digestion with low peptide residue. Jiang H, Yuan H, Liang Y, Xia S, Zhao Q, Wu Q, Zhang L, Liang Z, Zhang Y. J Chromatogr A; 2012 Jul 13; 1246():111-6. PubMed ID: 22446077 [Abstract] [Full Text] [Related]
4. Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification. Qin W, Song Z, Fan C, Zhang W, Cai Y, Zhang Y, Qian X. Anal Chem; 2012 Apr 03; 84(7):3138-44. PubMed ID: 22413971 [Abstract] [Full Text] [Related]
5. Immobilized trypsin on epoxy organic monoliths with modulated hydrophilicity: novel bioreactors useful for protein analysis by liquid chromatography coupled to tandem mass spectrometry. Calleri E, Temporini C, Gasparrini F, Simone P, Villani C, Ciogli A, Massolini G. J Chromatogr A; 2011 Dec 09; 1218(49):8937-45. PubMed ID: 21679957 [Abstract] [Full Text] [Related]
6. Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis. Bao H, Zhang L, Chen G. J Chromatogr A; 2013 Oct 04; 1310():74-81. PubMed ID: 23998335 [Abstract] [Full Text] [Related]
7. Dual matrix-based immobilized trypsin for complementary proteolytic digestion and fast proteomics analysis with higher protein sequence coverage. Fan C, Shi Z, Pan Y, Song Z, Zhang W, Zhao X, Tian F, Peng B, Qin W, Cai Y, Qian X. Anal Chem; 2014 Feb 04; 86(3):1452-8. PubMed ID: 24447065 [Abstract] [Full Text] [Related]
8. Immobilization of trypsin on sub-micron skeletal polymer monolith. Yao C, Qi L, Hu W, Wang F, Yang G. Anal Chim Acta; 2011 Apr 29; 692(1-2):131-7. PubMed ID: 21501722 [Abstract] [Full Text] [Related]
9. Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith. Ma J, Hou C, Liang Y, Wang T, Liang Z, Zhang L, Zhang Y. Proteomics; 2011 Mar 29; 11(5):991-5. PubMed ID: 21280225 [Abstract] [Full Text] [Related]
10. Fast multipoint immobilized MOF bioreactor. Liu WL, Wu CY, Chen CY, Singco B, Lin CH, Huang HY. Chemistry; 2014 Jul 14; 20(29):8923-8. PubMed ID: 24954123 [Abstract] [Full Text] [Related]
11. On-chip enzymatic microreactor using trypsin-immobilized superparamagnetic nanoparticles for highly efficient proteolysis. Liu J, Lin S, Qi D, Deng C, Yang P, Zhang X. J Chromatogr A; 2007 Dec 28; 1176(1-2):169-77. PubMed ID: 18021785 [Abstract] [Full Text] [Related]
12. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion. Jiang B, Yang K, Zhao Q, Wu Q, Liang Z, Zhang L, Peng X, Zhang Y. J Chromatogr A; 2012 Sep 07; 1254():8-13. PubMed ID: 22871380 [Abstract] [Full Text] [Related]
13. Rapid and efficient proteolysis for proteomic analysis by protease-immobilized microreactor. Yamaguchi H, Miyazaki M, Honda T, Briones-Nagata MP, Arima K, Maeda H. Electrophoresis; 2009 Sep 07; 30(18):3257-64. PubMed ID: 19722210 [Abstract] [Full Text] [Related]
14. Preparation of an improved hydrophilic monolith to make trypsin-immobilized microreactors. Meller K, Pomastowski P, Szumski M, Buszewski B. J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Feb 01; 1043():128-137. PubMed ID: 27595484 [Abstract] [Full Text] [Related]
15. Immobilization of trypsin on poly(urea-formaldehyde)-coated fiberglass cores in microchip for highly efficient proteolysis. Fan H, Bao H, Zhang L, Chen G. Proteomics; 2011 Aug 01; 11(16):3420-3. PubMed ID: 21751341 [Abstract] [Full Text] [Related]
16. Preparation and characterization of a packed bead immobilized trypsin reactor integrated into a PDMS microfluidic chip for rapid protein digestion. Kecskemeti A, Gaspar A. Talanta; 2017 May 01; 166():275-283. PubMed ID: 28213235 [Abstract] [Full Text] [Related]
17. Microscale enzyme reactors comprising gold nanoparticles with immobilized trypsin for efficient protein digestion. Safdar M, Spross J, Jänis J. J Mass Spectrom; 2013 Dec 01; 48(12):1281-4. PubMed ID: 24338882 [No Abstract] [Full Text] [Related]
18. Protein Analysis by Ambient Ionization Mass Spectrometry Using Trypsin-Immobilized Organosiloxane Polymer Surfaces. Dulay MT, Eberlin LS, Zare RN. Anal Chem; 2015 Dec 15; 87(24):12324-30. PubMed ID: 26567450 [Abstract] [Full Text] [Related]
19. Native protein proteolysis in an immobilized enzyme reactor as a function of temperature. Rivera-Burgos D, Regnier FE. Anal Chem; 2012 Aug 21; 84(16):7021-8. PubMed ID: 22845770 [Abstract] [Full Text] [Related]
20. Rapid and efficient proteolysis through laser-assisted immobilized enzyme reactors. Zhang P, Gao M, Zhu S, Lei J, Zhang X. J Chromatogr A; 2011 Nov 25; 1218(47):8567-71. PubMed ID: 22024345 [Abstract] [Full Text] [Related] Page: [Next] [New Search]