These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


540 related items for PubMed ID: 20010321

  • 1. Retinal pigment epithelial changes in chronic Vogt-Koyanagi-Harada disease: fundus autofluorescence and spectral domain-optical coherence tomography findings.
    Vasconcelos-Santos DV, Sohn EH, Sadda S, Rao NA.
    Retina; 2010 Jan; 30(1):33-41. PubMed ID: 20010321
    [Abstract] [Full Text] [Related]

  • 2. [Autofluorescence combined with spectral domain optical coherence tomography for diagnosis and follow-up of acute Vogt-Koyanagi-Harada disease].
    Tian S, Yao J, Wang J, Zhang J, Zhou A.
    Nan Fang Yi Ke Da Xue Xue Bao; 2021 Jan 30; 41(1):135-140. PubMed ID: 33509766
    [Abstract] [Full Text] [Related]

  • 3. Evaluation of Retinal Pigment Epithelium Layer Change in Vogt-Koyanagi-Harada Disease With Multicontrast Optical Coherence Tomography.
    Miura M, Makita S, Azuma S, Yasuno Y, Sugiyama S, Mino T, Yamaguchi T, Agawa T, Iwasaki T, Usui Y, Rao NA, Goto H.
    Invest Ophthalmol Vis Sci; 2019 Aug 01; 60(10):3352-3362. PubMed ID: 31917451
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Depigmented atrophic lesions in sunset glow fundi of Vogt-Koyanagi-Harada disease.
    Inomata H, Rao NA.
    Am J Ophthalmol; 2001 May 01; 131(5):607-14. PubMed ID: 11336935
    [Abstract] [Full Text] [Related]

  • 6. Acute Vogt-Koyanagi-Harada disease in enhanced spectral-domain optical coherence tomography.
    Ishihara K, Hangai M, Kita M, Yoshimura N.
    Ophthalmology; 2009 Sep 01; 116(9):1799-807. PubMed ID: 19643489
    [Abstract] [Full Text] [Related]

  • 7. Wavy and elevated retinal pigment epithelial line in optical coherence tomographic images of eyes with atypical Vogt-Koyanagi-Harada disease.
    Shinoda K, Imamura Y, Matsumoto CS, Mizota A, Ando Y.
    Graefes Arch Clin Exp Ophthalmol; 2012 Sep 01; 250(9):1399-402. PubMed ID: 22395203
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Photoreceptor Cell Injury Starts in the Initial Stage of Vogt-Koyanagi-Harada Disease.
    Zhu R, Zhang J, Qiao L, Zhang Y, Gu X, Yang L.
    Ocul Immunol Inflamm; 2018 Sep 01; 26(6):934-942. PubMed ID: 28323511
    [Abstract] [Full Text] [Related]

  • 11. Hyper-Reflective Outer Nuclear Layer (HONL) in Vogt-Koyanagi-Harada Disease and Sympathetic Ophthalmia.
    Fonollosa A, Charcán I, Giralt L, Artaraz J, Soto A, Ruiz-Arruza I, Agarwal A.
    Ocul Immunol Inflamm; 2024 May 01; 32(4):419-423. PubMed ID: 36332138
    [Abstract] [Full Text] [Related]

  • 12. RETINAL PIGMENT EPITHELIUM UNDULATIONS IN ACUTE STAGE OF VOGT-KOYANAGI-HARADA DISEASE: Biomarker for Functional Outcomes After High-Dose Steroid Therapy.
    Hashizume K, Imamura Y, Fujiwara T, Machida S, Ishida M, Kurosaka D.
    Retina; 2016 Feb 01; 36(2):415-21. PubMed ID: 26352553
    [Abstract] [Full Text] [Related]

  • 13. Fundus autofluorescence imaging in multifocal choroiditis: beyond the spots.
    Kramer M, Priel E.
    Ocul Immunol Inflamm; 2014 Oct 01; 22(5):349-55. PubMed ID: 24329681
    [Abstract] [Full Text] [Related]

  • 14. Relationship between retinal lesions and inward choroidal bulging in Vogt-Koyanagi-Harada disease.
    Hosoda Y, Uji A, Hangai M, Morooka S, Nishijima K, Yoshimura N.
    Am J Ophthalmol; 2014 May 01; 157(5):1056-63. PubMed ID: 24491415
    [Abstract] [Full Text] [Related]

  • 15. REGRESSION OF TYPE 2 NEOVASCULARIZATION INTO A TYPE 1 PATTERN AFTER INTRAVITREAL ANTI-VASCULAR ENDOTHELIAL GROWTH FACTOR THERAPY FOR NEOVASCULAR AGE-RELATED MACULAR DEGENERATION.
    Dolz-Marco R, Phasukkijwatana N, Sarraf D, Freund KB.
    Retina; 2017 Feb 01; 37(2):222-233. PubMed ID: 27627752
    [Abstract] [Full Text] [Related]

  • 16. Multimodal imaging in persistent placoid maculopathy.
    Gendy MG, Fawzi AA, Wendel RT, Pieramici DJ, Miller JA, Jampol LM.
    JAMA Ophthalmol; 2014 Jan 01; 132(1):38-49. PubMed ID: 24310266
    [Abstract] [Full Text] [Related]

  • 17. SS OCT and OCT-A Findings in Convalescent Inactive Vogt-Koyanagi-Harada Disease.
    Ben Aoun S, Ksiaa I, Nefzi D, Khochtali S, Jelliti B, Abroug N, Khairallah M.
    Ocul Immunol Inflamm; 2024 May 01; 32(4):407-414. PubMed ID: 37948509
    [Abstract] [Full Text] [Related]

  • 18. Time-periodic characteristics in the morphology of idiopathic central serous chorioretinopathy evaluated by volume scan using spectral-domain optical coherence tomography.
    Song IS, Shin YU, Lee BR.
    Am J Ophthalmol; 2012 Aug 01; 154(2):366-375.e4. PubMed ID: 22633348
    [Abstract] [Full Text] [Related]

  • 19. Diabetic retinal pigment epitheliopathy: fundus autofluorescence and spectral-domain optical coherence tomography findings.
    Kang EC, Seo Y, Byeon SH.
    Graefes Arch Clin Exp Ophthalmol; 2016 Oct 01; 254(10):1931-1940. PubMed ID: 27052841
    [Abstract] [Full Text] [Related]

  • 20. Fundus autofluorescence and spectral-domain optical coherence tomography findings of leopard spots in nanophthalmic uveal effusion syndrome.
    Okuda T, Higashide T, Wakabayashi Y, Nishimura A, Sugiyama K.
    Graefes Arch Clin Exp Ophthalmol; 2010 Aug 01; 248(8):1199-202. PubMed ID: 20300765
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.