These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
168 related items for PubMed ID: 20014412
1. Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum. Bartek T, Blombach B, Zönnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M. Biotechnol Prog; 2010; 26(2):361-71. PubMed ID: 20014412 [Abstract] [Full Text] [Related]
3. Engineering Corynebacterium glutamicum for the production of pyruvate. Wieschalka S, Blombach B, Eikmanns BJ. Appl Microbiol Biotechnol; 2012 Apr; 94(2):449-59. PubMed ID: 22228312 [Abstract] [Full Text] [Related]
4. [Metabolic flux analysis of L-valine fermentation in Corynebacterium glutamicum]. Li XM, Li NQ, Yang Y, Jiang XL, Qiu YJ, Zhang XY. Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):403-7. PubMed ID: 15971614 [Abstract] [Full Text] [Related]
5. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum. Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ. Appl Microbiol Biotechnol; 2007 Sep; 76(3):615-23. PubMed ID: 17333167 [Abstract] [Full Text] [Related]
6. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J, Wang B, Liu D, Chen T, Wang Z, Zhao X. Microb Cell Fact; 2016 Aug 12; 15(1):141. PubMed ID: 27520031 [Abstract] [Full Text] [Related]
7. Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC. Biotechnol Bioeng; 2009 Jan 01; 102(1):209-20. PubMed ID: 18698648 [Abstract] [Full Text] [Related]
8. Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H. Appl Environ Microbiol; 2012 Feb 01; 78(3):865-75. PubMed ID: 22138982 [Abstract] [Full Text] [Related]
9. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Li Y, Cong H, Liu B, Song J, Sun X, Zhang J, Yang Q. Antonie Van Leeuwenhoek; 2016 Sep 01; 109(9):1185-97. PubMed ID: 27255137 [Abstract] [Full Text] [Related]
10. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum. Wang C, Zhou Z, Cai H, Chen Z, Xu H. J Ind Microbiol Biotechnol; 2017 Jul 01; 44(7):1115-1126. PubMed ID: 28303352 [Abstract] [Full Text] [Related]
11. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Shi F, Li K, Huan X, Wang X. Appl Biochem Biotechnol; 2013 Sep 01; 171(2):504-21. PubMed ID: 23868449 [Abstract] [Full Text] [Related]
12. Implication of gluconate kinase activity in L-ornithine biosynthesis in Corynebacterium glutamicum. Hwang GH, Cho JY. J Ind Microbiol Biotechnol; 2012 Dec 01; 39(12):1869-74. PubMed ID: 22987028 [Abstract] [Full Text] [Related]
13. Mixed glucose and lactate uptake by Corynebacterium glutamicum through metabolic engineering. Neuner A, Heinzle E. Biotechnol J; 2011 Mar 01; 6(3):318-29. PubMed ID: 21370474 [Abstract] [Full Text] [Related]
14. Innovative metabolic pathway design for efficient l-glutamate production by suppressing CO2 emission. Chinen A, Kozlov YI, Hara Y, Izui H, Yasueda H. J Biosci Bioeng; 2007 Mar 01; 103(3):262-9. PubMed ID: 17434430 [Abstract] [Full Text] [Related]
15. Influence of L-isoleucine and pantothenate auxotrophy for L-valine formation in Corynebacterium glutamicum revisited by metabolome analyses. Bartek T, Makus P, Klein B, Lang S, Oldiges M. Bioprocess Biosyst Eng; 2008 Apr 01; 31(3):217-25. PubMed ID: 18224342 [Abstract] [Full Text] [Related]
16. Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. Marx A, Hans S, Möckel B, Bathe B, de Graaf AA, McCormack AC, Stapleton C, Burke K, O'Donohue M, Dunican LK. J Biotechnol; 2003 Sep 04; 104(1-3):185-97. PubMed ID: 12948638 [Abstract] [Full Text] [Related]
17. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply. Zhan M, Kan B, Dong J, Xu G, Han R, Ni Y. J Ind Microbiol Biotechnol; 2019 Jan 04; 46(1):45-54. PubMed ID: 30446890 [Abstract] [Full Text] [Related]
18. Monitoring and modeling of the reaction dynamics in the valine/leucine synthesis pathway in Corynebacterium glutamicum. Magnus JB, Hollwedel D, Oldiges M, Takors R. Biotechnol Prog; 2006 Jan 04; 22(4):1071-83. PubMed ID: 16889382 [Abstract] [Full Text] [Related]
19. Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H. Appl Microbiol Biotechnol; 2008 Jan 04; 77(5):1053-62. PubMed ID: 17965859 [Abstract] [Full Text] [Related]
20. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli. Lee WH, Chin YW, Han NS, Kim MD, Seo JH. Appl Microbiol Biotechnol; 2011 Aug 04; 91(4):967-76. PubMed ID: 21538115 [Abstract] [Full Text] [Related] Page: [Next] [New Search]