These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


213 related items for PubMed ID: 2002006

  • 1. Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes.
    Schüller HJ, Entian KD.
    J Bacteriol; 1991 Mar; 173(6):2045-52. PubMed ID: 2002006
    [Abstract] [Full Text] [Related]

  • 2. New genes involved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae.
    Entian KD, Zimmermann FK.
    J Bacteriol; 1982 Sep; 151(3):1123-8. PubMed ID: 7050076
    [Abstract] [Full Text] [Related]

  • 3. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae.
    Hedges D, Proft M, Entian KD.
    Mol Cell Biol; 1995 Apr; 15(4):1915-22. PubMed ID: 7891685
    [Abstract] [Full Text] [Related]

  • 4. Mutations causing constitutive invertase synthesis in yeast: genetic interactions with snf mutations.
    Neigeborn L, Carlson M.
    Genetics; 1987 Feb; 115(2):247-53. PubMed ID: 3549450
    [Abstract] [Full Text] [Related]

  • 5. Isolation and expression analysis of two yeast regulatory genes involved in the derepression of glucose-repressible enzymes.
    Schüller HJ, Entian KD.
    Mol Gen Genet; 1987 Sep; 209(2):366-73. PubMed ID: 2823078
    [Abstract] [Full Text] [Related]

  • 6. Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2.
    Hohmann S, Winderickx J, de Winde JH, Valckx D, Cobbaert P, Luyten K, de Meirsman C, Ramos J, Thevelein JM.
    Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():703-714. PubMed ID: 10217505
    [Abstract] [Full Text] [Related]

  • 7. Glucose repression in the yeast Saccharomyces cerevisiae.
    Trumbly RJ.
    Mol Microbiol; 1992 Jan; 6(1):15-21. PubMed ID: 1310793
    [Abstract] [Full Text] [Related]

  • 8. Genetics of carbon catabolite repression in Saccharomycess cerevisiae: genes involved in the derepression process.
    Zimmermann FK, Kaufmann I, Rasenberger H, Haubetamann P.
    Mol Gen Genet; 1977 Feb 28; 151(1):95-103. PubMed ID: 194140
    [Abstract] [Full Text] [Related]

  • 9. Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression.
    Zimmermann FK, Scheel I.
    Mol Gen Genet; 1977 Jul 07; 154(1):75-82. PubMed ID: 197390
    [Abstract] [Full Text] [Related]

  • 10. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression.
    Entian KD, Fröhlich KU.
    J Bacteriol; 1984 Apr 07; 158(1):29-35. PubMed ID: 6370959
    [Abstract] [Full Text] [Related]

  • 11. Parallel changes in catabolite repression of haem biosynthesis and cytochromes in repression-resistant mutants of Saccharomyces cerevisiae.
    Borralho LM, Malamud DR, Panek AD, Tenan MN, Oliveira DE, Mattoon JR.
    J Gen Microbiol; 1989 May 07; 135(5):1217-27. PubMed ID: 2695599
    [Abstract] [Full Text] [Related]

  • 12. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures.
    Aon MA, Cortassa S.
    Biotechnol Bioeng; 1998 Jul 20; 59(2):203-13. PubMed ID: 10099331
    [Abstract] [Full Text] [Related]

  • 13. A carbon catabolite repression mutant of Saccharomyces cerevisiae with elevated hexokinase activity: evidence for regulatory control of hexokinase PII synthesis.
    Entian KD.
    Mol Gen Genet; 1981 Jul 20; 184(2):278-82. PubMed ID: 7035837
    [Abstract] [Full Text] [Related]

  • 14. Suppressors of SNF2 mutations restore invertase derepression and cause temperature-sensitive lethality in yeast.
    Neigeborn L, Rubin K, Carlson M.
    Genetics; 1986 Apr 20; 112(4):741-53. PubMed ID: 3514373
    [Abstract] [Full Text] [Related]

  • 15. CAT5, a new gene necessary for derepression of gluconeogenic enzymes in Saccharomyces cerevisiae.
    Proft M, Kötter P, Hedges D, Bojunga N, Entian KD.
    EMBO J; 1995 Dec 15; 14(24):6116-26. PubMed ID: 8557031
    [Abstract] [Full Text] [Related]

  • 16. Molecular characterization of yeast regulatory gene CAT3 necessary for glucose derepression and nuclear localization of its product.
    Schüller HJ, Entian KD.
    Gene; 1988 Jul 30; 67(2):247-57. PubMed ID: 3049255
    [Abstract] [Full Text] [Related]

  • 17. Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast.
    Niederacher D, Entian KD.
    Eur J Biochem; 1991 Sep 01; 200(2):311-9. PubMed ID: 1889400
    [Abstract] [Full Text] [Related]

  • 18. Identification and characterisation of two transcriptional repressor elements within the coding sequence of the Saccharomyces cerevisiae HXK2 gene.
    Herrero P, Ramírez M, Martínez-Campa C, Moreno F.
    Nucleic Acids Res; 1996 May 15; 24(10):1822-8. PubMed ID: 8657561
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae.
    Belinchón MM, Gancedo JM.
    Arch Microbiol; 2003 Oct 15; 180(4):293-7. PubMed ID: 12955310
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.