These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


281 related items for PubMed ID: 20020234

  • 1. Correlation between blue-on-yellow perimetry and scanning laser polarimetry with variable corneal compensation measurements in primary open-angle glaucoma.
    Zhong Y, Chen L, Cheng Y, Huang P.
    Jpn J Ophthalmol; 2009 Nov; 53(6):574-579. PubMed ID: 20020234
    [Abstract] [Full Text] [Related]

  • 2. GDx VCC measurements and blue-on-yellow perimetry in ocular hypertension.
    Zhong Y, Chen L, Cheng Y, Yu F.
    Lasers Med Sci; 2013 Feb; 28(2):361-5. PubMed ID: 22307497
    [Abstract] [Full Text] [Related]

  • 3. GDx-VCC performance in discriminating normal from glaucomatous eyes with early visual field loss.
    Da Pozzo S, Fuser M, Vattovani O, Di Stefano G, Ravalico G.
    Graefes Arch Clin Exp Ophthalmol; 2006 Jun; 244(6):689-95. PubMed ID: 16292656
    [Abstract] [Full Text] [Related]

  • 4. Scanning laser polarimetry with variable corneal compensation in primary angle-closure glaucoma.
    Liu CJ, Cheng CY, Hsu WM.
    Ophthalmology; 2008 Aug; 115(8):1334-9. PubMed ID: 18201763
    [Abstract] [Full Text] [Related]

  • 5. Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in normal and glaucomatous eyes.
    Bagga H, Greenfield DS, Feuer W, Knighton RW.
    Am J Ophthalmol; 2003 Apr; 135(4):521-9. PubMed ID: 12654370
    [Abstract] [Full Text] [Related]

  • 6. Comparing glaucomatous optic neuropathy in primary open angle and primary angle closure glaucoma eyes by scanning laser polarimetry-variable corneal compensation.
    Chen HY, Huang ML, Tsai YY, Hung PT, Lin EJ.
    J Glaucoma; 2008 Mar; 17(2):105-10. PubMed ID: 18344755
    [Abstract] [Full Text] [Related]

  • 7. Structure-function relationship is stronger with enhanced corneal compensation than with variable corneal compensation in scanning laser polarimetry.
    Mai TA, Reus NJ, Lemij HG.
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1651-8. PubMed ID: 17389496
    [Abstract] [Full Text] [Related]

  • 8. Rates of progressive retinal nerve fiber layer loss in glaucoma measured by scanning laser polarimetry.
    Medeiros FA, Zangwill LM, Alencar LM, Sample PA, Weinreb RN.
    Am J Ophthalmol; 2010 Jun; 149(6):908-15. PubMed ID: 20378095
    [Abstract] [Full Text] [Related]

  • 9. Diagnostic capability of scanning laser polarimetry with variable cornea compensator in Indian patients with early primary open-angle glaucoma.
    Parikh RS, Parikh SR, Kumar RS, Prabakaran S, Babu JG, Thomas R.
    Ophthalmology; 2008 Jul; 115(7):1167-1172.e1. PubMed ID: 18061269
    [Abstract] [Full Text] [Related]

  • 10. Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in tilted disk.
    Yu S, Tanabe T, Hangai M, Morishita S, Kurimoto Y, Yoshimura N.
    Am J Ophthalmol; 2006 Sep; 142(3):475-82. PubMed ID: 16935594
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Early glaucoma detection using the Humphrey Matrix Perimeter, GDx VCC, Stratus OCT, and retinal nerve fiber layer photography.
    Hong S, Ahn H, Ha SJ, Yeom HY, Seong GJ, Hong YJ.
    Ophthalmology; 2007 Feb; 114(2):210-5. PubMed ID: 17270671
    [Abstract] [Full Text] [Related]

  • 13. Scanning laser polarimetry using variable corneal compensation in the detection of glaucoma with localized visual field defects.
    Kook MS, Cho HS, Seong M, Choi J.
    Ophthalmology; 2005 Nov; 112(11):1970-8. PubMed ID: 16185765
    [Abstract] [Full Text] [Related]

  • 14. The relationship between standard automated perimetry and GDx VCC measurements.
    Reus NJ, Lemij HG.
    Invest Ophthalmol Vis Sci; 2004 Mar; 45(3):840-5. PubMed ID: 14985299
    [Abstract] [Full Text] [Related]

  • 15. Detection of progressive retinal nerve fiber layer loss in glaucoma using scanning laser polarimetry with variable corneal compensation.
    Medeiros FA, Alencar LM, Zangwill LM, Bowd C, Vizzeri G, Sample PA, Weinreb RN.
    Invest Ophthalmol Vis Sci; 2009 Apr; 50(4):1675-81. PubMed ID: 19029038
    [Abstract] [Full Text] [Related]

  • 16. Comparison of shape-based analysis of retinal nerve fiber layer data obtained From OCT and GDx-VCC.
    Gunvant P, Zheng Y, Essock EA, Parikh RS, Prabakaran S, Babu JG, Shekar CG, Thomas R.
    J Glaucoma; 2009 Aug; 18(6):464-71. PubMed ID: 19680055
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Correlation of disc morphology quantified on stereophotographs to results by Heidelberg Retina Tomograph II, GDx variable corneal compensation, and visual field tests.
    Saito H, Tsutsumi T, Iwase A, Tomidokoro A, Araie M.
    Ophthalmology; 2010 Feb; 117(2):282-9. PubMed ID: 19969361
    [Abstract] [Full Text] [Related]

  • 19. Impact of atypical retardation patterns on detection of glaucoma progression using the GDx with variable corneal compensation.
    Medeiros FA, Alencar LM, Zangwill LM, Sample PA, Susanna R, Weinreb RN.
    Am J Ophthalmol; 2009 Jul; 148(1):155-63.e1. PubMed ID: 19375062
    [Abstract] [Full Text] [Related]

  • 20. Diagnostic capability of scanning laser polarimetry with and without enhanced corneal compensation and optical coherence tomography.
    Benítez-del-Castillo J, Martinez A, Regi T.
    Eur J Ophthalmol; 2011 Jul; 21(3):228-36. PubMed ID: 20872357
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.