These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


252 related items for PubMed ID: 20021476

  • 61.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 62.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 63.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 64.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 65.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 66.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 67.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 68.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 69. A dynamic bubble trap reduces microbubbles during cardiopulmonary bypass: a case study.
    Schönburg M, Urbanek P, Erhardt G, Taborski U, Plechinger H, Hein S, Roth M, Klövekorn WP.
    J Extra Corpor Technol; 2000 Sep; 32(3):165-9. PubMed ID: 11146963
    [Abstract] [Full Text] [Related]

  • 70. Evidence for improved cerebral function after minimally invasive bypass surgery.
    BhaskerRao B, VanHimbergen D, Edmonds HL, Jaber S, Ali AT, Pagni S, Koenig S, Spence PA.
    J Card Surg; 1998 Jan; 13(1):27-31. PubMed ID: 9892482
    [Abstract] [Full Text] [Related]

  • 71. Preventing gaseous microemboli during blood sampling and drug administration: an in vitro investigation.
    Myers GJ.
    J Extra Corpor Technol; 2007 Sep; 39(3):192-8. PubMed ID: 17972455
    [Abstract] [Full Text] [Related]

  • 72.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 73. An in vitro comparison of the ability of three commonly used pediatric cardiopulmonary bypass circuits to filter gaseous microemboli.
    Feng Qiu, Talor J, Ündar A.
    Perfusion; 2011 Mar; 26(2):167-8. PubMed ID: 21173038
    [No Abstract] [Full Text] [Related]

  • 74. Clinical relevance of transcranial Doppler in a cardiac surgery setting: embolic load predicts difficult separation from cardiopulmonary bypass.
    Jarry S, Couture EJ, Beaubien-Souligny W, Fernandes A, Fortier A, Ben-Ali W, Desjardins G, Huard K, Mailhot T, Denault AY.
    J Cardiothorac Surg; 2024 Feb 13; 19(1):90. PubMed ID: 38347542
    [Abstract] [Full Text] [Related]

  • 75. Effect of aortic cannula characteristics and blood velocity on transcranial doppler-detected microemboli during cardiopulmonary bypass.
    Benaroia M, Baker AJ, Mazer CD, Errett L.
    J Cardiothorac Vasc Anesth; 1998 Jun 13; 12(3):266-9. PubMed ID: 9636905
    [Abstract] [Full Text] [Related]

  • 76. Bubbles and bypass: an update.
    Kurusz M, Butler BD.
    Perfusion; 2004 Jun 13; 19 Suppl 1():S49-55. PubMed ID: 15161064
    [Abstract] [Full Text] [Related]

  • 77. Can transcranial Doppler discriminate between solid and gaseous microemboli? Assessment of a dual-frequency transducer system.
    Markus HS, Punter M.
    Stroke; 2005 Aug 13; 36(8):1731-4. PubMed ID: 16020767
    [Abstract] [Full Text] [Related]

  • 78. Transcranial Doppler-guided deairing of a pediatric ventricular assist device: experience with twins.
    Erdoes G, Kadner A, Hutter D, Eberle B.
    A A Case Rep; 2015 Jan 01; 4(1):5-7. PubMed ID: 25612271
    [Abstract] [Full Text] [Related]

  • 79. Optimizing venous drainage using an ultrasonic flow probe on the venous line.
    Walker JL, Young HA, Lawson DS, Husain SA, Calhoon JH.
    J Extra Corpor Technol; 2011 Sep 01; 43(3):157-61. PubMed ID: 22164455
    [Abstract] [Full Text] [Related]

  • 80. A systematic approach to the understanding and redesigning of cardiopulmonary bypass.
    Groom RC.
    Semin Cardiothorac Vasc Anesth; 2005 Jun 01; 9(2):159-61. PubMed ID: 15920642
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.