These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


458 related items for PubMed ID: 20025999

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers.
    Yu Y, Deng C, Meng F, Shi Q, Feijen J, Zhong Z.
    J Biomed Mater Res A; 2011 Nov; 99(2):316-26. PubMed ID: 21887740
    [Abstract] [Full Text] [Related]

  • 3. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
    Skaalure SC, Dimson SO, Pennington AM, Bryant SJ.
    Acta Biomater; 2014 Aug; 10(8):3409-20. PubMed ID: 24769116
    [Abstract] [Full Text] [Related]

  • 4. Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering.
    Dadsetan M, Szatkowski JP, Yaszemski MJ, Lu L.
    Biomacromolecules; 2007 May; 8(5):1702-9. PubMed ID: 17419584
    [Abstract] [Full Text] [Related]

  • 5. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering.
    Martens PJ, Bryant SJ, Anseth KS.
    Biomacromolecules; 2003 May; 4(2):283-92. PubMed ID: 12625723
    [Abstract] [Full Text] [Related]

  • 6. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties.
    Noh I, Kim GW, Choi YJ, Kim MS, Park Y, Lee KB, Kim IS, Hwang SJ, Tae G.
    Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391
    [Abstract] [Full Text] [Related]

  • 7. In vitro cytotoxicity of unsaturated oligo[poly(ethylene glycol) fumarate] macromers and their cross-linked hydrogels.
    Shin H, Temenoff JS, Mikos AG.
    Biomacromolecules; 2003 Sep; 4(3):552-60. PubMed ID: 12741769
    [Abstract] [Full Text] [Related]

  • 8. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.
    Brink KS, Yang PJ, Temenoff JS.
    Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068
    [Abstract] [Full Text] [Related]

  • 9. Unique biomaterial compositions direct bone marrow stem cells into specific chondrocytic phenotypes corresponding to the various zones of articular cartilage.
    Nguyen LH, Kudva AK, Guckert NL, Linse KD, Roy K.
    Biomaterials; 2011 Feb; 32(5):1327-38. PubMed ID: 21067807
    [Abstract] [Full Text] [Related]

  • 10. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering.
    Montembault A, Tahiri K, Korwin-Zmijowska C, Chevalier X, Corvol MT, Domard A.
    Biochimie; 2006 May; 88(5):551-64. PubMed ID: 16626850
    [Abstract] [Full Text] [Related]

  • 11. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.
    Yang Z, Zhang Y, Markland P, Yang VC.
    J Biomed Mater Res; 2002 Oct; 62(1):14-21. PubMed ID: 12124782
    [Abstract] [Full Text] [Related]

  • 12. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering.
    Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, Minami A, Monde K, Nishimura S.
    Biomaterials; 2005 Feb; 26(6):611-9. PubMed ID: 15282139
    [Abstract] [Full Text] [Related]

  • 13. Thermoreversible hydrogel scaffolds for articular cartilage engineering.
    Fisher JP, Jo S, Mikos AG, Reddi AH.
    J Biomed Mater Res A; 2004 Nov 01; 71(2):268-74. PubMed ID: 15368220
    [Abstract] [Full Text] [Related]

  • 14. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites.
    Fu S, Guo G, Gong C, Zeng S, Liang H, Luo F, Zhang X, Zhao X, Wei Y, Qian Z.
    J Phys Chem B; 2009 Dec 31; 113(52):16518-25. PubMed ID: 19947637
    [Abstract] [Full Text] [Related]

  • 15. Synthesis and degradation test of hyaluronic acid hydrogels.
    Hahn SK, Park JK, Tomimatsu T, Shimoboji T.
    Int J Biol Macromol; 2007 Mar 10; 40(4):374-80. PubMed ID: 17101173
    [Abstract] [Full Text] [Related]

  • 16. Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications.
    Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG.
    Biomaterials; 2005 Dec 10; 26(34):7095-103. PubMed ID: 16023196
    [Abstract] [Full Text] [Related]

  • 17. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage.
    Liu SQ, Tian Q, Hedrick JL, Po Hui JH, Ee PL, Yang YY.
    Biomaterials; 2010 Oct 10; 31(28):7298-307. PubMed ID: 20615545
    [Abstract] [Full Text] [Related]

  • 18. Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization.
    Hiemstra C, Zhou W, Zhong Z, Wouters M, Feijen J.
    J Am Chem Soc; 2007 Aug 15; 129(32):9918-26. PubMed ID: 17645336
    [Abstract] [Full Text] [Related]

  • 19. Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering.
    Wang J, Zhang F, Tsang WP, Wan C, Wu C.
    Biomaterials; 2017 Mar 15; 120():11-21. PubMed ID: 28024231
    [Abstract] [Full Text] [Related]

  • 20. Encapsulation of chondrocytes in injectable alkali-treated collagen gels prepared using poly(ethylene glycol)-based 4-armed star polymer.
    Taguchi T, Xu L, Kobayashi H, Taniguchi A, Kataoka K, Tanaka J.
    Biomaterials; 2005 Apr 15; 26(11):1247-52. PubMed ID: 15475054
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.