These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


119 related items for PubMed ID: 20030396

  • 1. Direct observation of the pH-dependent equilibrium between metarhodopsins I and II and the pH-independent interaction of metarhodopsin II with transducin C-terminal peptide.
    Sato K, Morizumi T, Yamashita T, Shichida Y.
    Biochemistry; 2010 Feb 02; 49(4):736-41. PubMed ID: 20030396
    [Abstract] [Full Text] [Related]

  • 2. Contribution of glutamic acid in the conserved E/DRY triad to the functional properties of rhodopsin.
    Sato K, Yamashita T, Shichida Y.
    Biochemistry; 2014 Jul 15; 53(27):4420-5. PubMed ID: 24960425
    [Abstract] [Full Text] [Related]

  • 3. The molecular origin of the inhibition of transducin activation in rhodopsin lacking the 9-methyl group of the retinal chromophore: a UV-Vis and FTIR spectroscopic study.
    Vogel R, Fan GB, Sheves M, Siebert F.
    Biochemistry; 2000 Aug 01; 39(30):8895-908. PubMed ID: 10913302
    [Abstract] [Full Text] [Related]

  • 4. Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin.
    Jäger S, Palczewski K, Hofmann KP.
    Biochemistry; 1996 Mar 05; 35(9):2901-8. PubMed ID: 8608127
    [Abstract] [Full Text] [Related]

  • 5. Temperature and pH dependence of the metarhodopsin I-metarhodopsin II equilibrium and the binding of metarhodopsin II to G protein in rod disk membranes.
    Parkes JH, Gibson SK, Liebman PA.
    Biochemistry; 1999 May 25; 38(21):6862-78. PubMed ID: 10346908
    [Abstract] [Full Text] [Related]

  • 6. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin.
    Zvyaga TA, Fahmy K, Sakmar TP.
    Biochemistry; 1994 Aug 16; 33(32):9753-61. PubMed ID: 8068654
    [Abstract] [Full Text] [Related]

  • 7. Movement of the retinylidene Schiff base counterion in rhodopsin by one helix turn reverses the pH dependence of the metarhodopsin I to metarhodopsin II transition.
    Zvyaga TA, Min KC, Beck M, Sakmar TP.
    J Biol Chem; 1993 Mar 05; 268(7):4661-7. PubMed ID: 8444840
    [Abstract] [Full Text] [Related]

  • 8. Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin.
    Pulvermüller A, Schroder K, Fischer T, Hofmann KP.
    J Biol Chem; 2000 Dec 01; 275(48):37679-85. PubMed ID: 10969086
    [Abstract] [Full Text] [Related]

  • 9. Enhancement of opsin activity by all-trans-retinal.
    Surya A, Knox BE.
    Exp Eye Res; 1998 May 01; 66(5):599-603. PubMed ID: 9628807
    [Abstract] [Full Text] [Related]

  • 10. Kinetics of the light-induced proton translocation associated with the pH-dependent formation of the metarhodopsin I/II equilibrium of bovine rhodopsin.
    Dickopf S, Mielke T, Heyn MP.
    Biochemistry; 1998 Dec 01; 37(48):16888-97. PubMed ID: 9836581
    [Abstract] [Full Text] [Related]

  • 11. Phosphorylation alters the pH-dependent active state equilibrium of rhodopsin by modulating the membrane surface potential.
    Gibson SK, Parkes JH, Liebman PA.
    Biochemistry; 1999 Aug 24; 38(34):11103-14. PubMed ID: 10460166
    [Abstract] [Full Text] [Related]

  • 12. Metarhodopsin-II stabilization by crosslinked Gtalpha C-terminal peptides and implications for the mechanism of GPCR-G protein coupling.
    Angel TE, Kraft PC, Dratz EA.
    Vision Res; 2006 Dec 24; 46(27):4547-55. PubMed ID: 17014882
    [Abstract] [Full Text] [Related]

  • 13. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H, Yoshizawa T.
    Photochem Photobiol; 2008 Dec 24; 84(4):985-9. PubMed ID: 18399914
    [Abstract] [Full Text] [Related]

  • 14. Phosphorylation stabilizes the active conformation of rhodopsin.
    Gibson SK, Parkes JH, Liebman PA.
    Biochemistry; 1998 Aug 18; 37(33):11393-8. PubMed ID: 9708973
    [Abstract] [Full Text] [Related]

  • 15. Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes.
    Gibson NJ, Brown MF.
    Biochemistry; 1993 Mar 09; 32(9):2438-54. PubMed ID: 8443184
    [Abstract] [Full Text] [Related]

  • 16. Structure and function in rhodopsin: the fate of opsin formed upon the decay of light-activated metarhodopsin II in vitro.
    Sakamoto T, Khorana HG.
    Proc Natl Acad Sci U S A; 1995 Jan 03; 92(1):249-53. PubMed ID: 7816826
    [Abstract] [Full Text] [Related]

  • 17. Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin.
    Brabazon DM, Abdulaev NG, Marino JP, Ridge KD.
    Biochemistry; 2003 Jan 21; 42(2):302-11. PubMed ID: 12525157
    [Abstract] [Full Text] [Related]

  • 18. Photoregeneration of bovine rhodopsin from its signaling state.
    Arnis S, Hofmann KP.
    Biochemistry; 1995 Jul 25; 34(29):9333-40. PubMed ID: 7626602
    [Abstract] [Full Text] [Related]

  • 19. Membrane lipid influences on the energetics of the metarhodopsin I and metarhodopsin II conformational states of rhodopsin probed by flash photolysis.
    Gibson NJ, Brown MF.
    Photochem Photobiol; 1991 Dec 25; 54(6):985-92. PubMed ID: 1775536
    [Abstract] [Full Text] [Related]

  • 20. Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state.
    Arnis S, Hofmann KP.
    Proc Natl Acad Sci U S A; 1993 Aug 15; 90(16):7849-53. PubMed ID: 8356093
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.