These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


355 related items for PubMed ID: 20045974

  • 1. Structural characteristics for superoxide anion radical scavenging and productive activities of green tea polyphenols including proanthocyanidin dimers.
    Sato M, Toyazaki H, Yoshioka Y, Yokoi N, Yamasaki T.
    Chem Pharm Bull (Tokyo); 2010 Jan; 58(1):98-102. PubMed ID: 20045974
    [Abstract] [Full Text] [Related]

  • 2. Potential anthelmintics: polyphenols from the tea plant Camellia sinensis L. are lethally toxic to Caenorhabditis elegans.
    Mukai D, Matsuda N, Yoshioka Y, Sato M, Yamasaki T.
    J Nat Med; 2008 Apr; 62(2):155-9. PubMed ID: 18404315
    [Abstract] [Full Text] [Related]

  • 3. Polyphenols from peanut skins and their free radical-scavenging effects.
    Lou H, Yuan H, Ma B, Ren D, Ji M, Oka S.
    Phytochemistry; 2004 Aug; 65(16):2391-9. PubMed ID: 15381013
    [Abstract] [Full Text] [Related]

  • 4. Radical scavenging activity of tea catechins and their related compounds.
    Nanjo F, Mori M, Goto K, Hara Y.
    Biosci Biotechnol Biochem; 1999 Sep; 63(9):1621-3. PubMed ID: 10610125
    [Abstract] [Full Text] [Related]

  • 5. Three New Oxidation Products Produced from Epigallocatechin-3- O-gallate and Epicatechin-3-O-gallate.
    Li Y, Matsuo Y, Saito Y, Tanaka T.
    Nat Prod Commun; 2016 Feb; 11(2):189-92. PubMed ID: 27032198
    [Abstract] [Full Text] [Related]

  • 6. Direct scavenging of nitric oxide and superoxide by green tea.
    Nakagawa T, Yokozawa T.
    Food Chem Toxicol; 2002 Dec; 40(12):1745-50. PubMed ID: 12419687
    [Abstract] [Full Text] [Related]

  • 7. Effects of structure on radical-scavenging abilities and antioxidative activities of tea polyphenols: NMR analytical approach using 1,1-diphenyl-2-picrylhydrazyl radicals.
    Sawai Y, Moon JH, Sakata K, Watanabe N.
    J Agric Food Chem; 2005 May 04; 53(9):3598-604. PubMed ID: 15853407
    [Abstract] [Full Text] [Related]

  • 8. PCL assay application in superoxide anion-radical scavenging capacity of tea Camellia sinensis extracts.
    Gramza-Michałowska A, Sidor A, Reguła J, Kulczyński B.
    Acta Sci Pol Technol Aliment; 2015 May 04; 14(4):331-341. PubMed ID: 28068039
    [Abstract] [Full Text] [Related]

  • 9. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro.
    Nakai M, Fukui Y, Asami S, Toyoda-Ono Y, Iwashita T, Shibata H, Mitsunaga T, Hashimoto F, Kiso Y.
    J Agric Food Chem; 2005 Jun 01; 53(11):4593-8. PubMed ID: 15913331
    [Abstract] [Full Text] [Related]

  • 10. Effect of far-infrared irradiation on catechins and nitrite scavenging activity of green tea.
    Lee SC, Kim SY, Jeong SM, Park JH.
    J Agric Food Chem; 2006 Jan 25; 54(2):399-403. PubMed ID: 16417296
    [Abstract] [Full Text] [Related]

  • 11. A novel long-chain acyl-derivative of epigallocatechin-3-O-gallate prepared and purified from green tea polyphenols.
    Chen P, Tan Y, Sun D, Zheng XM.
    J Zhejiang Univ Sci; 2003 Jan 25; 4(6):714-8. PubMed ID: 14566988
    [Abstract] [Full Text] [Related]

  • 12. Free radicals generated during oxidation of green tea polyphenols: electron paramagnetic resonance spectroscopy combined with density functional theory calculations.
    Severino JF, Goodman BA, Kay CW, Stolze K, Tunega D, Reichenauer TG, Pirker KF.
    Free Radic Biol Med; 2009 Apr 15; 46(8):1076-88. PubMed ID: 19439236
    [Abstract] [Full Text] [Related]

  • 13. Tea enhances insulin activity.
    Anderson RA, Polansky MM.
    J Agric Food Chem; 2002 Nov 20; 50(24):7182-6. PubMed ID: 12428980
    [Abstract] [Full Text] [Related]

  • 14. Green tea polyphenols: novel and potent inhibitors of squalene epoxidase.
    Abe I, Seki T, Umehara K, Miyase T, Noguchi H, Sakakibara J, Ono T.
    Biochem Biophys Res Commun; 2000 Feb 24; 268(3):767-71. PubMed ID: 10679280
    [Abstract] [Full Text] [Related]

  • 15. Impact of Green Tea Catechin ECG and Its Synthesized Fluorinated Analogue on Prostate Cancer Cells and Stimulated Immunocompetent Cells.
    Stadlbauer S, Steinborn C, Klemd A, Hattori F, Ohmori K, Suzuki K, Huber R, Wolf P, Gründemann C.
    Planta Med; 2018 Jul 24; 84(11):813-819. PubMed ID: 29466808
    [Abstract] [Full Text] [Related]

  • 16. Comparison of the nutrient and chemical contents of traditional Korean Chungtaejeon and green teas.
    Park YS, Lee MK, Heo BG, Ham KS, Kang SG, Cho JY, Gorinstein S.
    Plant Foods Hum Nutr; 2010 Jun 24; 65(2):186-91. PubMed ID: 20490689
    [Abstract] [Full Text] [Related]

  • 17. Proanthocyanidins and a phloroglucinol derivative from Rumex acetosa L.
    Bicker J, Petereit F, Hensel A.
    Fitoterapia; 2009 Dec 24; 80(8):483-95. PubMed ID: 19695312
    [Abstract] [Full Text] [Related]

  • 18. Inhibitory effects of green tea polyphenols on the production of a virulence factor of the periodontal-disease-causing anaerobic bacterium Porphyromonas gingivalis.
    Sakanaka S, Okada Y.
    J Agric Food Chem; 2004 Mar 24; 52(6):1688-92. PubMed ID: 15030231
    [Abstract] [Full Text] [Related]

  • 19. Inhibitory effects of green tea polyphenols on growth and cellular adherence of an oral bacterium, Porphyromonas gingivalis.
    Sakanaka S, Aizawa M, Kim M, Yamamoto T.
    Biosci Biotechnol Biochem; 1996 May 24; 60(5):745-9. PubMed ID: 8704303
    [Abstract] [Full Text] [Related]

  • 20. Radical scavenging of white tea and its flavonoid constituents by electron paramagnetic resonance (EPR) spectroscopy.
    Azman NA, Peiró S, Fajarí L, Julià L, Almajano MP.
    J Agric Food Chem; 2014 Jun 25; 62(25):5743-8. PubMed ID: 24885813
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.