These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
152 related items for PubMed ID: 2005024
1. Modification of a colorimetric analysis for lignin and its use in studying the inhibitory effects of lignin on forage digestion by ruminal microorganisms. Fukushima RS, Dehority BA, Loerch SC. J Anim Sci; 1991 Jan; 69(1):295-304. PubMed ID: 2005024 [Abstract] [Full Text] [Related]
2. Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Guo D, Chen F, Wheeler J, Winder J, Selman S, Peterson M, Dixon RA. Transgenic Res; 2001 Oct; 10(5):457-64. PubMed ID: 11708655 [Abstract] [Full Text] [Related]
6. Feasibility of using lignin isolated from forages by solubilization in acetyl bromide as a standard for lignin analyses. Fukushima RS, Dehority BA. J Anim Sci; 2000 Dec; 78(12):3135-43. PubMed ID: 11132828 [Abstract] [Full Text] [Related]
7. Forages and Pastures Symposium: revisiting mechanisms, methods, and models for altering forage cell wall utilization for ruminants. Tedeschi LO, Adams JM, Vieira RAM. J Anim Sci; 2023 Jan 03; 101():. PubMed ID: 36617721 [Abstract] [Full Text] [Related]
8. Effects of particle size of alfalfa-based dairy cow diets on site and extent of digestion. Yang WZ, Beauchemin KA, Rode LM. J Dairy Sci; 2002 Aug 03; 85(8):1958-68. PubMed ID: 12214988 [Abstract] [Full Text] [Related]
9. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. Raffrenato E, Fievisohn R, Cotanch KW, Grant RJ, Chase LE, Van Amburgh ME. J Dairy Sci; 2017 Oct 03; 100(10):8119-8131. PubMed ID: 28780096 [Abstract] [Full Text] [Related]
11. Effect of reducing dietary forage in lower starch diets on performance, ruminal characteristics, and nutrient digestibility in lactating Holstein cows. Farmer ER, Tucker HA, Dann HM, Cotanch KW, Mooney CS, Lock AL, Yagi K, Grant RJ. J Dairy Sci; 2014 Sep 03; 97(9):5742-53. PubMed ID: 24996272 [Abstract] [Full Text] [Related]
12. Effects of forage particle size, forage source, and grain fermentability on performance and ruminal pH in midlactation cows. Krause KM, Combs DK. J Dairy Sci; 2003 Apr 03; 86(4):1382-97. PubMed ID: 12741563 [Abstract] [Full Text] [Related]
13. Degradation of cellulose and forage fiber fractions by ruminal cellulolytic bacteria alone and in coculture with phenolic monomer-degrading bacteria. Varel VH, Jung HG, Krumholz LR. J Anim Sci; 1991 Dec 03; 69(12):4993-5000. PubMed ID: 1667013 [Abstract] [Full Text] [Related]
14. Effects of nonstructural carbohydrate concentration in alfalfa on fermentation and microbial protein synthesis in continuous culture. Berthiaume R, Benchaar C, Chaves AV, Tremblay GF, Castonguay Y, Bertrand A, Bélanger G, Michaud R, Lafrenière C, McAllister TA, Brito AF. J Dairy Sci; 2010 Feb 03; 93(2):693-700. PubMed ID: 20105540 [Abstract] [Full Text] [Related]
15. Degradation of lignified secondary cell walls of lucerne (Medicago sativa L.) by rumen fungi growing in methanogenic co-culture. Bootten TJ, Joblin KN, McArdle BH, Harris PJ. J Appl Microbiol; 2011 Nov 03; 111(5):1086-96. PubMed ID: 21848807 [Abstract] [Full Text] [Related]
16. Transformation with TT8 and HB12 RNAi Constructs in Model Forage (Medicago sativa, Alfalfa) Affects Carbohydrate Structure and Metabolic Characteristics in Ruminant Livestock Systems. Li X, Zhang Y, Hannoufa A, Yu P. J Agric Food Chem; 2015 Nov 04; 63(43):9590-600. PubMed ID: 26492548 [Abstract] [Full Text] [Related]